Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939855

RESUMO

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Assuntos
Proteínas de Transporte , Colestase , Nefropatias , Hepatopatias , Glicoproteínas de Membrana , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Humanos , Camundongos , Animais , Colestase/complicações , Colestase/metabolismo , Rim/metabolismo , Simportadores/metabolismo , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Ductos Biliares/metabolismo , Hepatopatias/metabolismo , Sódio
2.
Cancers (Basel) ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36900203

RESUMO

We examined differences in HER2 expression between primary tumors and distant metastases, particularly within the HER2-negative primary breast cancer cohort (HER2-low and HER2-zero). The retrospective study included 191 consecutive paired samples of primary breast cancer and distant metastases diagnosed between 1995 and 2019. HER2-negative samples were divided into HER2-zero (immunohistochemistry [IHC] score 0) and HER2-low (IHC score 1+ or 2+/in situ hybridization [ISH]-negative). The main objective was to analyze the discordance rate between matched primary and metastatic samples, focusing on the site of distant metastasis, molecular subtype, and de novo metastatic breast cancer. The relationship was determined by cross-tabulation and calculation of Cohen's Kappa coefficient. The final study cohort included 148 paired samples. The largest proportion in the HER2-negative cohort was HER2-low [primary tumor 61.4% (n = 78), metastatic samples 73.5% (n = 86)]. The discordance rate between the HER2 status of primary tumors and corresponding distant metastases was 49.6% (n = 63) (Kappa -0.003, 95%CI -0.15-0.15). Development of a HER2-low phenotype occurred most frequently (n = 52, 40.9%), mostly with a switch from HER2-zero to HER2-low (n = 34, 26.8%). Relevant HER2 discordance rates were observed between different metastatic sites and molecular subtypes. Primary metastatic breast cancer had a significantly lower HER2 discordance rate than secondary metastatic breast cancer [30.2% (Kappa 0.48, 95%CI 0.27-0.69) versus 50.5% (Kappa 0.14, 95% CI -0.03-0.32)]. This highlights the importance of evaluating potentially therapy-relevant discordance rates between a primary tumor and corresponding distant metastases.

3.
Eur J Cancer ; 173: 10-19, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35839597

RESUMO

BACKGROUND: Recently, novel antibody--drug conjugates (ADCs) showed clinical activity in a subset of advanced human epidermal growth factor receptor 2 (HER2)-negative patients. We investigated the prognostic significance of HER2-low and HER2-zero tumours. PATIENTS AND METHODS: The retrospective cohort study included 410 consecutive node-negative breast cancer patients without adjuvant systemic therapy treated between 1985 and 2000 (median follow-up: 16.73 [IQR 8.58-23.45] years). 351 (85.6%) were HER-2 negative and subdivided into HER2-zero (immunohistochemistry [IHC] score 0) and HER2-low (IHC score 1+ or 2+/in situ hybridisation [ISH]-negative). HER2 gene expression was available in 170 (48.4%) patients. Differences in HER2 status for immunohistochemistry, gene expression and clinico-pathologic parameters were assessed using Fisher's exact test, Pearson's correlation and Mann-Whitney test. Prognosis was investigated using the Kaplan-Meier method and Cox regression analyses. RESULTS: Of the 351 HER2-negative patients, 198 (56.4%) had HER2-low tumours and 153 (43.6%) were HER2-zero. Significant differences between HER2-zero and HER2-low tumours were found in histologic grading (P = 0.001), Ki-67 (P = 0.013) and HER2 gene expression (P = 0.002). HER2-low patients had significantly longer disease-free survival (DFS) (15-year rate: 67.5% [95% CI 61.0-74.7] vs. 47.3% [95% CI 39.9-56.1], P < 0.001) and overall survival (OS) (15-year rate: 75.4% [95% CI 69.4-81.9] vs. 66.8% [95% CI 59.5-74.9], P = 0.009). The OS difference was observed in hormone receptor (HR)-positive (P = 0.039) but not HR-negative (P = 0.086) tumours. The results of multivariable analyses confirmed the independent prognostic significance of HER2 status (DFS: HR, 0.546; 95% CI, 0.402-0.743; P < 0.001; OS: HR, 0.653; 95% CI, 0.458-0.932; P = 0.019). CONCLUSION: HER2-low patients had a better survival than HER2-zero patients.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Feminino , Humanos , Prognóstico , Receptor ErbB-2/metabolismo , Estudos Retrospectivos
4.
J Hepatol ; 77(1): 71-83, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35131407

RESUMO

BACKGROUND & AIMS: Acetaminophen (APAP) overdose remains a frequent cause of acute liver failure, which is generally accompanied by increased levels of serum bile acids (BAs). However, the pathophysiological role of BAs remains elusive. Herein, we investigated the role of BAs in APAP-induced hepatotoxicity. METHODS: We performed intravital imaging to investigate BA transport in mice, quantified endogenous BA concentrations in the serum of mice and patients with APAP overdose, analyzed liver tissue and bile by mass spectrometry and MALDI-mass spectrometry imaging, assessed the integrity of the blood-bile barrier and the role of oxidative stress by immunostaining of tight junction proteins and intravital imaging of fluorescent markers, identified the intracellular cytotoxic concentrations of BAs, and performed interventions to block BA uptake from blood into hepatocytes. RESULTS: Prior to the onset of cell death, APAP overdose causes massive oxidative stress in the pericentral lobular zone, which coincided with a breach of the blood-bile barrier. Consequently, BAs leak from the bile canaliculi into the sinusoidal blood, which is then followed by their uptake into hepatocytes via the basolateral membrane, their secretion into canaliculi and repeated cycling. This, what we termed 'futile cycling' of BAs, led to increased intracellular BA concentrations that were high enough to cause hepatocyte death. Importantly, however, the interruption of BA re-uptake by pharmacological NTCP blockage using Myrcludex B and Oatp knockout strongly reduced APAP-induced hepatotoxicity. CONCLUSIONS: APAP overdose induces a breach of the blood-bile barrier which leads to futile BA cycling that causes hepatocyte death. Prevention of BA cycling may represent a therapeutic option after APAP intoxication. LAY SUMMARY: Only one drug, N-acetylcysteine, is approved for the treatment of acetaminophen overdose and it is only effective when given within ∼8 hours after ingestion. We identified a mechanism by which acetaminophen overdose causes an increase in bile acid concentrations (to above toxic thresholds) in hepatocytes. Blocking this mechanism prevented acetaminophen-induced hepatotoxicity in mice and evidence from patients suggests that this therapy may be effective for longer periods after ingestion compared to N-acetylcysteine.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Overdose de Drogas , Acetaminofen/metabolismo , Acetilcisteína/farmacologia , Animais , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
5.
Cells ; 10(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34685496

RESUMO

Mouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease. Acetaminophen toxicity and ammonia metabolism were additionally analyzed as functional readouts. We identified a sequence of eight key events: formation of lipid droplets; inflammatory foci; lipogranulomas; zonal reorganization; cell death and replacement proliferation; ductular reaction; fibrogenesis; and hepatocellular cancer. Functional changes included resistance to acetaminophen and altered nitrogen metabolism. The transcriptomic landscape was characterized by two large clusters of monotonously increasing or decreasing genes, and a smaller number of 'rest-and-jump genes' that initially remained unaltered but became differentially expressed only at week 12 or later. Approximately 30% of the genes altered in human NAFLD are also altered in the present mouse model and an increasing overlap with genes altered in human HCC occurred at weeks 30-48. In conclusion, the observed sequence of events recapitulates many features of human disease and offers a basis for the identification of therapeutic targets.


Assuntos
Carcinoma Hepatocelular/patologia , Dieta Ocidental/efeitos adversos , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Arch Toxicol ; 94(11): 3787-3798, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32965549

RESUMO

In cell biology, pharmacology and toxicology dose-response and concentration-response curves are frequently fitted to data with statistical methods. Such fits are used to derive quantitative measures (e.g. EC[Formula: see text] values) describing the relationship between the concentration of a compound or the strength of an intervention applied to cells and its effect on viability or function of these cells. Often, a reference, called negative control (or solvent control), is used to normalize the data. The negative control data sometimes deviate from the values measured for low (ineffective) test compound concentrations. In such cases, normalization of the data with respect to control values leads to biased estimates of the parameters of the concentration-response curve. Low quality estimates of effective concentrations can be the consequence. In a literature study, we found that this problem occurs in a large percentage of toxicological publications. We propose different strategies to tackle the problem, including complete omission of the controls. Data from a controlled simulation study indicate the best-suited problem solution for different data structure scenarios. This was further exemplified by a real concentration-response study. We provide the following recommendations how to handle deviating controls: (1) The log-logistic 4pLL model is a good default option. (2) When there are at least two concentrations in the no-effect range, low variances of the replicate measurements, and deviating controls, control values should be omitted before fitting the model. (3) When data are missing in the no-effect range, the Brain-Cousens model sometimes leads to better results than the default model.


Assuntos
Algoritmos , Técnicas In Vitro , Modelos Estatísticos , Linhagem Celular , Simulação por Computador , Células Hep G2 , Humanos , Modelos Biológicos , Distribuição Normal , Projetos de Pesquisa , Ácido Valproico/análise , Ácido Valproico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA