Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Elife ; 122023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37342083

RESUMO

A20 haploinsufficiency (HA20) is an autoinflammatory disease caused by heterozygous loss-of-function variations in TNFAIP3, the gene encoding the A20 protein. Diagnosis of HA20 is challenging due to its heterogeneous clinical presentation and the lack of pathognomonic symptoms. While the pathogenic effect of TNFAIP3 truncating variations is clearly established, that of missense variations is difficult to determine. Herein, we identified a novel TNFAIP3 variation, p.(Leu236Pro), located in the A20 ovarian tumor (OTU) domain and demonstrated its pathogenicity. In the patients' primary cells, we observed reduced A20 levels. Protein destabilization was predicted in silico for A20_Leu236Pro and enhanced proteasomal degradation was confirmed in vitro through a flow cytometry-based functional assay. By applying this approach to the study of another missense variant, A20_Leu275Pro, for which no functional characterization has been performed to date, we showed that this variant also undergoes enhanced proteasomal degradation. Moreover, we showed a disrupted ability of A20_Leu236Pro to inhibit the NF-κB pathway and to deubiquitinate its substrate TRAF6. Structural modeling revealed that two residues involved in OTU pathogenic missense variations (i.e. Glu192Lys and Cys243Tyr) establish common interactions with Leu236. Interpretation of newly identified missense variations is challenging, requiring, as illustrated here, functional demonstration of their pathogenicity. Together with functional studies, in silico structure analysis is a valuable approach that allowed us (i) to provide a mechanistic explanation for the haploinsufficiency resulting from missense variations and (ii) to unveil a region within the OTU domain critical for A20 function.


Assuntos
Mutação de Sentido Incorreto , NF-kappa B , Humanos , NF-kappa B/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
2.
Rheumatology (Oxford) ; 62(1): 473-479, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35640127

RESUMO

OBJECTIVE: To identify the molecular basis of a systemic autoinflammatory disorder (SAID) evocative of TNF receptor-associated periodic syndrome (TRAPS). METHODS: (i) Deep next generation sequencing (NGS) through a SAID gene panel; (ii) variant allele distribution in peripheral blood subpopulations; (iii) in silico analyses of mosaic variants using TNF receptor superfamily 1A (TNFRSF1A) crystal structure; (iv) review of the very rare TNFRSF1A mosaic variants reported previously. RESULTS: In a 36-year-old man suffering from recurrent fever for 12 years, high-depth NGS revealed a TNFRSF1A mosaic variant, c.176G>A p.(Cys59Tyr), which Sanger sequencing failed to detect. This mosaic variant displayed a variant allele fraction of 14% in whole blood; it affects both myeloid and lymphoid lineages. p.(Cys59Tyr), a recurrent germline pathogenic variant, affects a crucial cysteine located in the first cysteine-rich domain (CRD1) and involved in a disulphide bridge. Introduction of a tyrosine at this position is expected to disrupt the CRD1 structure. Review of the three previously reported TNFRSF1A mosaic variants revealed that they are all located in a small region of CRD2 and that germinal cells can be affected. CONCLUSION: This study expands the localization of TNFRSF1A mosaic variants to the CRD1 domain. Noticeably, residues involved in germline TNFRSF1A mutational hot spots can also be involved in post-zygotic mutational events. Including our study, only four patients have been thus far reported with TNFRSF1A mosaicism, highlighting the need for a high-depth NGS-based approach to avoid the misdiagnosis of TRAPS. Genetic counselling has to consider the potential occurrence of TNFRSF1A mosaic variants in germinal cells.


Assuntos
Cisteína , Doenças Hereditárias Autoinflamatórias , Masculino , Humanos , Adulto , Cisteína/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Febre/genética , Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/diagnóstico , Mutação
3.
PLoS One ; 14(5): e0217005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31100086

RESUMO

Circulating serum amyloid A (SAA) is increased in various inflammatory conditions. The human SAA protein family comprises the acute phase SAA1/SAA2, known to activate a large set of innate and adaptive immune cells, and the constitutive SAA4. The liver synthesis of SAA1/SAA2 is well-established but there is still an open debate on extrahepatic SAA expression especially in macrophages. We aimed to investigate the ability of human primary monocytes and monocyte-derived macrophages to express SAA1, SAA2 and SAA4 at both the transcriptional and protein levels, as previous studies almost exclusively dealt with monocytic cell lines. Monocytes and derived macrophages from healthy donors were stimulated under various conditions. In parallel with SAA, pro-inflammatory IL1A, IL1B and IL6 cytokine expression was assessed. While LPS alone was non-effective, a combined LPS/dexamethasone treatment induced SAA1 and to a lesser extent SAA2 transcription in human monocytes and macrophages. In contrast, as expected, pro-inflammatory cytokine expression was strongly induced following stimulation with LPS, an effect which was dampened in the presence of dexamethasone. Furthermore, in monocytes polarized towards a pro-inflammatory M1 phenotype, SAA expression in response to LPS/dexamethasone was potentiated; a result mainly seen for SAA1. However, a major discrepancy was observed between SAA mRNA and intracellular protein levels under the experimental conditions used. Our results demonstrate that human monocytes and macrophages can express SAA genes, mainly SAA1 in response to an inflammatory environment. While SAA is considered as a member of a large cytokine network, its expression in the monocytes-macrophages in response to LPS-dexamethasone is strikingly different from that observed for classic pro-inflammatory cytokines. As monocytes-macrophages are major players in chronic inflammatory diseases, it may be hypothesized that SAA production from macrophages may contribute to the local inflammatory microenvironment, especially when macrophages are compactly organized in granulomas as in sarcoidosis.


Assuntos
Inflamação/sangue , Proteína Amiloide A Sérica/genética , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Interleucina-1alfa/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo
4.
Cardiovasc Res ; 115(2): 292-301, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010817

RESUMO

Aims: Oxidative stress and inflammation play a pathogenic role in atherosclerosis. Thioredoxin-1 (Trx-1) is an anti-oxidative, anti-inflammatory protein with atheroprotective effects. However, in vivo cleavage of Trx-1 generates a truncated pro-inflammatory protein, Trx-80, which compromises the therapeutic use of Trx-1. Here we analysed whether the thioredoxin-mimetic peptide (TxMP), CB3 might exert anti-oxidative, anti-inflammatory, and atheroprotective effects in ApoE2.Ki mice. Methods and results: We synthesized a small TxMP, Ac-Cys-Pro-Cys-amide, CB3 and characterized its antioxidant and anti-inflammatory effects on cultured peritoneal murine macrophages. CB3 significantly and dose-dependently reduced the level of reactive oxygen species in lipopolysaccharides (LPS)-activated macrophages. In addition, it efficiently lowered LPS-induced inflammatory process through NF-κB inhibition, as evidenced by the reduced secretion of monocyte chemoattractant protein-1, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α by macrophages. Nevertheless, CB3 did not affect cholesterol accumulation in macrophages. A daily-administered dose of 10 µg/g body weight CB3 to ApoE2.Ki mice on high fat diet did not affect plasma of total cholesterol and triglycerides levels but significantly reduced the plasma levels of pro-inflammatory cytokines (IL-33 and TNF-α) and oxidative markers. In contrast, it significantly induced the plasma levels of anti-inflammatory proteins (adiponectin, IL-10). In addition, CB3 reduced the number of pro-inflammatory M1 macrophages in spleen and decreased the ratio of M1/M2 macrophages in atherosclerotic lesion areas. Finally, CB3 significantly reduced the surface area of aortic lesions. Conclusions: Our results clearly showed that similar to the full length Trx-1, CB3 exerts protective effects, by reducing inflammation and oxidative stress in macrophages and in ApoE2.Ki mice. The atheroprotective effect of CB3 opens promising therapeutic approaches for treatment of atherosclerosis.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Dieta Hiperlipídica , Mediadores da Inflamação/metabolismo , Mimetismo Molecular , Oligopeptídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Placa Aterosclerótica , Compostos de Sulfidrila/farmacologia , Animais , Anti-Inflamatórios/síntese química , Antioxidantes/síntese química , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Oligopeptídeos/síntese química , Transdução de Sinais , Compostos de Sulfidrila/síntese química , Tiorredoxinas/metabolismo
5.
Mech Ageing Dev ; 172: 131-137, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545203

RESUMO

Photoaging and epithelial skin tumorigenesis are complex processes triggered mainly by UV radiation from chronic sun exposure. This leads to DNA damage and reactive oxygen species (ROS) production, which initiate an inflammatory response that alters cell structure and function. Changes in cell homeostasis and ROS production activate intracellular multiprotein platforms called inflammasomes. Inflammasomes nucleate around cytoplasmic receptors mainly of the NLR (nucleotide-binding domain and leucine-rich repeat) family and regulate caspase-1-dependant secretion of pro-inflammatory interleukin (IL)1ß and IL18 cytokines, and an inflammatory form of death named pyroptosis. NLRP1 inflammasomes have taken centre stage in skin biology, as mutations in NLRP1 underlie the genetic etiology of dermatological diseases and increase the susceptibility to skin cancer. Targeting inflammasome(s) might be an important approach to improve skin inflammation, photoaging and reduce the risk of epithelial skin tumorigenesis. In this context, we discuss the potential implication of NLRP1 and NLRP3 inflammasomes.


Assuntos
Envelhecimento da Pele/efeitos da radiação , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Proteínas de Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/patologia
6.
PLoS One ; 12(4): e0175336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403163

RESUMO

Inflammasomes are multiprotein complexes nucleating around an NLR (Nucleotide-binding domain and Leucine-rich Repeat containing protein), which regulate the secretion of the pro-inflammatory interleukin (IL)-1ß and IL-18 cytokines. Monocytes and macrophages, the main cells expressing the inflammasome genes, adapt to their surrounding microenvironment by a phenotypic polarization towards a pro-inflammatory M1 phenotype that promotes inflammation or an anti-inflammatory M2 phenotype important for resolution of inflammation. Despite the importance of inflammasomes in health and disease, little is known about inflammasome gene expression in relevant human cells and the impact of monocyte and macrophage polarization in inflammasome gene expression. We examined the expression of several members of the NLR, caspase and cytokine family, and we studied the activation of the well-described NLRP3 inflammasome in an experimental model of polarized human primary monocytes and monocyte-derived macrophages (M1/M2 phenotypes) before and after activation with LPS, a well-characterized microbial pattern used in inflammasome activation studies. Our results show that the differentiation of monocytes to macrophages alters NLR expression. Polarization using IFN-γ (M1 phenotype), induces among the NLRs studied, only the expression of NOD2. One of the key results of our study is that the induction of NLRP3 expression by LPS is inhibited in the presence of IL-4+IL-13 (M2 phenotype) at both mRNA and protein level in monocytes and macrophages. Unlike caspase-3, the expression of inflammasome-related CASP1 (encodes caspase-1) and CASP4 (encodes caspase-4) is up-regulated in M1 but not in M2 cells. Interestingly, the presence of LPS marginally influenced IL18 mRNA expression and secretion, unlike its impact on IL1B. Our data provide the basis for a better understanding of the role of different inflammasomes within a given environment (M1 and M2) in human cells and their impact in the pathophysiology of several important inflammatory disorders.


Assuntos
Inflamassomos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas NLR/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Caspases/genética , Caspases/imunologia , Polaridade Celular , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Regulação da Expressão Gênica , Humanos , Inflamassomos/genética , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas NLR/genética , Proteína Adaptadora de Sinalização NOD2/genética
7.
Cardiovasc Res ; 112(3): 702-713, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27694435

RESUMO

AIMS: Lipid phosphate phosphatase 3; type 2 phosphatidic acid phosphatase ß (LPP3; PPAP2B) is a transmembrane protein dephosphorylating and thereby terminating signalling of lipid substrates including lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). Human LPP3 possesses a cell adhesion motif that allows interaction with integrins. A polymorphism (rs17114036) in PPAP2B is associated with coronary artery disease, which prompted us to investigate the possible role of LPP3 in human endothelial dysfunction, a condition promoting atherosclerosis. METHODS AND RESULTS: To study the role of LPP3 in endothelial cells we used human primary aortic endothelial cells (HAECs) in which LPP3 was silenced or overexpressed using either wild type or mutated cDNA constructs. LPP3 silencing in HAECs enhanced secretion of inflammatory cytokines, leucocyte adhesion, cell survival, and migration and impaired angiogenesis, whereas wild-type LPP3 overexpression reversed these effects and induced apoptosis. We also demonstrated that LPP3 expression was negatively correlated with vascular endothelial growth factor expression. Mutations in either the catalytic or the arginine-glycine-aspartate (RGD) domains impaired endothelial cell function and pharmacological inhibition of S1P or LPA restored it. LPA was not secreted in HAECs under silencing or overexpressing LPP3. However, the intra- and extra-cellular levels of S1P tended to be correlated with LPP3 expression, indicating that S1P is probably degraded by LPP3. CONCLUSIONS: We demonstrated that LPP3 is a negative regulator of inflammatory cytokines, leucocyte adhesion, cell survival, and migration in HAECs, suggesting a protective role of LPP3 against endothelial dysfunction in humans. Both the catalytic and the RGD functional domains were involved and S1P, but not LPA, might be the endogenous substrate of LPP3.


Assuntos
Aorta/enzimologia , Células Endoteliais/enzimologia , Neovascularização Fisiológica , Fosfatidato Fosfatase/metabolismo , Apoptose , Domínio Catalítico , Adesão Celular , Movimento Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Mutação , Fosfatidato Fosfatase/química , Fosfatidato Fosfatase/genética , Cultura Primária de Células , Domínios Proteicos , Interferência de RNA , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Especificidade por Substrato , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Orphanet J Rare Dis ; 10: 76, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26076658

RESUMO

We report on a familial Mediterranean fever (FMF) patient homozygous for p.M694V in the MEFV gene who developed chronic myelomonocytic leukemia (CMML) leading to an uncontrolled and fatal inflammatory syndrome. Plasma levels of IL-6 and IL-18 were found to be very high, as compared to healthy controls and CMML-free FMF patients.Our study unveils the interplay between two different disorders involving the same target cells, suggesting that in myelodysplasia with inflammatory manifestations, mutations in genes causing autoinflammatory syndromes, like MEFV, can be present and thus could be sought. Early chemotherapy with interleukin inhibitors could be proposed in such unusual situations.


Assuntos
Febre Familiar do Mediterrâneo/imunologia , Inflamação/etiologia , Inflamação/imunologia , Leucemia Mielomonocítica Crônica/complicações , Leucemia Mielomonocítica Crônica/imunologia , Idoso de 80 Anos ou mais , Proteínas do Citoesqueleto/genética , Febre Familiar do Mediterrâneo/sangue , Humanos , Inflamação/sangue , Interleucina-18/sangue , Interleucina-6/sangue , Leucemia Mielomonocítica Crônica/sangue , Masculino , Mutação , Pirina
9.
Arthritis Rheumatol ; 66(9): 2621-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24891336

RESUMO

OBJECTIVE: Autoinflammatory disorders are caused by a primary dysfunction of the innate immune system. Among these disorders are hereditary recurrent fevers, which are characterized by recurrent episodes of fever and inflammatory manifestations affecting multiple tissues. Hereditary recurrent fevers often lack objective diagnostic criteria, thereby hampering the identification of disease-causing genes. This study was undertaken to identify a gene responsible for hereditary recurrent fevers. METHODS: Copy number variations and point mutations were sought by array-comparative genomic hybridization and polymerase chain reaction sequencing, respectively. Serum cytokine levels were measured using Luminex technology. The effect of TNFRSF11A molecular defects on NF-κB signaling in cells expressing wild-type and mutated forms of the receptor was evaluated by luciferase assay. RESULTS: A patient with multiple congenital anomalies and hereditary recurrent fever was found to carry a de novo heterozygous complex chromosomal rearrangement encompassing a duplication of TNFRSF11A, a gene known to regulate fever in rodents. We also identified a heterozygous frameshift mutation (p.Met416Cysfs*110) in TNFRSF11A in a mother and daughter with isolated hereditary recurrent fever. This mutation was associated with increased secretion of several inflammatory cytokines (tumor necrosis factor α [TNFα], interleukin-18 [IL-18], IL-1 receptor antagonist, interferon-γ) and altered the biologic effects of the receptor on NF-κB signaling. The disease in the patients described herein exhibits striking clinical similarities to TNF receptor-associated periodic syndrome, another hereditary recurrent fever involving a gene of the same family (TNFRSF1A). CONCLUSION: The involvement of TNFRSF11A in hereditary recurrent fever highlights the key role of this receptor in innate immunity. The present results also suggest that TNFRSF11A screening could serve as a new diagnostic test for autoinflammatory disorders.


Assuntos
Variações do Número de Cópias de DNA , Doenças Hereditárias Autoinflamatórias/genética , Imunidade Inata/genética , Mutação , Receptor Ativador de Fator Nuclear kappa-B/genética , Adulto , Pré-Escolar , Feminino , Genótipo , Doenças Hereditárias Autoinflamatórias/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
10.
PLoS One ; 8(7): e69757, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894535

RESUMO

OBJECTIVES: TNFRSF1A is involved in an autosomal dominant autoinflammatory disorder called TNFR-associated periodic syndrome (TRAPS). Most TNFRSF1A mutations are missense changes and, apart from those affecting conserved cysteines, their deleterious effect remains often questionable. This is especially true for the frequent R92Q mutation, which might not be responsible for TRAPS per se but represents a susceptibility factor to multifactorial inflammatory disorders. This study investigates TRAPS pathophysiology in a family exceptional by its size (13 members) and compares the consequences of several mutations affecting arginine 92. METHODS: TNFRSF1A screening was performed by PCR-sequencing. Comparison of the 3-dimensional structure and electrostatic properties of wild-type and mutated TNFR1 proteins was performed by in silico homology modeling. TNFR1 expression was assessed by FACS analysis, western blotting and ELISA in lysates and supernatants of HEK293T cells transiently expressing wild-type and mutated TNFR1. RESULTS: A TNFRSF1A heterozygous missense mutation, R92W (c.361C>T), was shown to perfectly segregate with typical TRAPS manifestations within the family investigated (p<5.10(-4)). It was associated with very high disease penetrance (0.9). Prediction of its impact on the protein structure revealed local conformational changes and alterations of the receptor electrostatic properties. R92W also impairs the TNFR1 expression at the cell surface and the levels of soluble receptor. Similar results were obtained with R92P, another mutation previously identified in a very small familial form with incomplete penetrance and variable expressivity. In contrast, TNFR1-R92Q behaves like the wild-type receptor. CONCLUSIONS: These data demonstrate the pathogenicity of a mutation affecting arginine 92, a residue whose involvement in inflammatory disorders is deeply debated. Combined with previous reports on arginine 92 mutations, this study discloses an unusual situation in which different amino acid substitutions at the same position in the protein are associated with a clinical spectrum bridging Mendelian to multifactorial conditions.


Assuntos
Doenças Hereditárias Autoinflamatórias/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Adolescente , Adulto , Arginina/química , Arginina/genética , Western Blotting , Criança , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Genótipo , Doenças Hereditárias Autoinflamatórias/genética , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Linhagem , Reação em Cadeia da Polimerase , Transporte Proteico , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Eletricidade Estática , Adulto Jovem
11.
Lipids Health Dis ; 12: 26, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23510583

RESUMO

BACKGROUND: Our previous work showed that dietary oxidized linoleic acid given, as a single fatty acid, to LDL receptor knockout mice decreased weight gain as compared to control mice. Other studies have also reported that animals fed oils heated for 24 h or greater showed reduced weight gain. These observations, while important, have limited significance since fried foods in the typical human diet do not contain the extreme levels of oxidized lipids used in these studies. The main goal of this study was to investigate the effects of a diet containing soybean oil heated for 3 h on weight gain and fat pad mass in mice. Additionally, because PPARγ and UCP-1 mediate adipocyte differentiation and thermogenesis, respectively, the effect of this diet on these proteins was also examined. FINDINGS: Four to six week old male C57BL/6 J mice were randomly divided into three groups and given either a low fat diet with heated soybean oil (HSO) or unheated soybean oil (USO) or pair fed for 16 weeks. Weight and food intake were monitored and fat pads were harvested upon the study's termination. Mice consuming the HSO diet had significantly increased fat pad mass but gained less weight as compared to mice in the USO group despite a similar caloric intake and similar levels of PPARγ and UCP1. CONCLUSION: This is the first study to show that a diet containing soybean oil heated for a short time increases fat mass despite a decreased weight gain in C57BL/6 J mice. The subsequent metabolic consequences of this increased fat mass merits further investigation.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Dieta com Restrição de Gorduras , Gorduras na Dieta/administração & dosagem , Óleo de Soja/farmacologia , Tecido Adiposo/metabolismo , Animais , Composição Corporal/efeitos dos fármacos , Culinária , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Temperatura Alta , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Óleo de Soja/química , Proteína Desacopladora 1 , Aumento de Peso/efeitos dos fármacos
12.
Arterioscler Thromb Vasc Biol ; 33(3): 466-73, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23349189

RESUMO

OBJECTIVE: Several secreted phospholipases A2 (sPLA2s), including group IIA, III, V, and X, have been linked to the development of atherosclerosis, which led to the clinical testing of A-002 (varespladib), a broad sPLA2 inhibitor for the treatment of coronary artery disease. Group X sPLA2 (PLA2G10) has the most potent hydrolyzing activity toward phosphatidylcholine and is believed to play a proatherogenic role. METHODS AND RESULTS: Here, we show that Ldlr(-/-) mice reconstituted with bone marrow from mouse group X-deficient mice (Pla2g10(-/-)) unexpectedly display a doubling of plaque size compared with Pla2g10(+/+) chimeric mice. Macrophages of Pla2g10(-/-) mice are more susceptible to apoptosis in vitro, which is associated with a 4-fold increase of plaque necrotic core in vivo. In addition, chimeric Pla2g10(-/-) mice show exaggerated T lymphocyte (Th)1 immune response, associated with enhanced T-cell infiltration in atherosclerotic plaques. Interestingly, overexpression of human PLA2G10 in murine bone marrow cells leads to significant reduction of Th1 response and to 50% reduction of lesion size. CONCLUSIONS: PLA2G10 expression in bone marrow cells controls a proatherogenic Th1 response and limits the development of atherosclerosis. The results may provide an explanation for the recently reported inefficacy of A-002 (varespladib) to treat patients with coronary artery disease. Indeed, A-002 is a nonselective sPLA2 inhibitor that inhibits both proatherogenic (groups IIA and V) and antiatherogenic (group X) sPLA2s. Our results suggest that selective targeting of individual sPLA2 enzymes may be a better strategy to treat cardiovascular diseases.


Assuntos
Aorta Torácica/enzimologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Fosfolipases A2 do Grupo X/metabolismo , Receptores de LDL/deficiência , Imunidade Adaptativa , Animais , Aorta Torácica/imunologia , Aorta Torácica/patologia , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/patologia , Apoptose , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/patologia , Transplante de Medula Óssea , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Fosfolipases A2 do Grupo X/deficiência , Fosfolipases A2 do Grupo X/genética , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Necrose , Placa Aterosclerótica , Receptores de LDL/genética , Células Th1/imunologia , Fatores de Tempo
13.
FASEB J ; 24(9): 3284-97, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20430794

RESUMO

Secreted phospholipases A2 (sPLA2s) are present in atherosclerotic plaques and are now considered novel attractive therapeutic targets and potential biomarkers as they contribute to the development of atherosclerosis through lipoprotein-dependent and independent mechanisms. We have previously shown that hGX-sPLA2-phospholipolyzed LDL (LDL-X) induces proinflammatory responses in human umbilical endothelial cells (HUVECs); here we explore the molecular mechanisms involved. Global transcriptional gene expression profiling of the response of endothelial cells exposed to either LDL or LDL-X revealed that LDL-X activates multiple distinct cellular pathways including the unfolded protein response (UPR). Mechanistic insight showed that LDL-X activates UPR through calcium depletion of intracellular stores, which in turn disturbs cytoskeleton organization. Treatment of HUVECs and aortic endothelial cells (HAECs) with LDL-X led to activation of all 3 proximal initiators of UPR: eIF-2alpha, IRE1alpha, and ATF6. In parallel, we observed a sustained phosphorylation of the p38 pathway resulting in the phosphorylation of AP-1 downstream targets. This was accompanied by significant production of the proinflammatory cytokines IL-6 and IL-8. Our study demonstrates that phospholipolyzed LDL uses a range of molecular pathways including UPR to initiate endothelial cell perturbation and thus provides an LDL oxidation-independent mechanism for the initiation of vascular inflammation in atherosclerosis.


Assuntos
Retículo Endoplasmático/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Lipoproteínas LDL/farmacologia , Fator 6 Ativador da Transcrição/metabolismo , Western Blotting , Células Cultivadas , Endorribonucleases/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Imunofluorescência , Inativação Gênica , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipoproteínas LDL/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosfolipases A2 Secretórias , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Veias Umbilicais/citologia , Resposta a Proteínas não Dobradas
14.
Arterioscler Thromb Vasc Biol ; 29(12): 2041-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19797705

RESUMO

OBJECTIVE: To study the association of PAF-acetyl hydrolase (PAFAH) activity with inflammation, oxidative stress, and atherosclerosis in hypercholesterolemic swine. METHODS AND RESULTS: Cholesterol-rich diet feeding of miniature pigs was associated with an increase in PAFAH activity and an increase of the PAFAH to PON1 ratio. PLA2G7 RNA (coding for PAFAH) expression was increased in blood monocytes and plaque macrophages. Increased PAFAH activity was associated with higher plasma lysophosphatidylcholine and correlated with oxidized LDL. In THP1 monocytes and macrophages and in human blood-derived macrophages, oxidized LDL induced PLA2G7 RNA expression. Atherogenic diet feeding induced the accumulation of macrophages and oxidized LDL in the arterial wall leading to atherosclerosis. PAFAH activity correlated positively with plaque size and TNFalpha expression in plaque macrophages. CONCLUSIONS: We demonstrated that an increase in PAFAH activity was associated with increased levels of lysophosphatidylcholine, oxidized LDL, and inflammation, resulting in accelerated atherosclerosis in hypercholesterolemic minipigs. The significant correlation between PLA2G7 RNA expression in plaque macrophages and plasma PAFAH activity suggests that the latter is a consequence, rather than a cause of macrophage accumulation. Our cell experiments suggest that oxidized LDL can induce PAFAH, resulting in accumulation of lysophosphatidylcholine that increases the inflammatory action of oxidized LDL.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Aterosclerose/etiologia , Aterosclerose/metabolismo , Hipercolesterolemia/complicações , Hipercolesterolemia/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Metabolismo dos Lipídeos , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Sequência de Aminoácidos , Animais , Arildialquilfosfatase/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Vasos Coronários/patologia , Dieta Aterogênica , Expressão Gênica , Humanos , Hipercolesterolemia/genética , Inflamação/genética , Macrófagos/metabolismo , Macrófagos/patologia , Dados de Sequência Molecular , Oxirredução , Estresse Oxidativo , RNA/genética , RNA/metabolismo , Suínos , Porco Miniatura
15.
Angiology ; 59(2): 137-44, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18403458

RESUMO

It has been proposed that apolipoprotein J (apo J) and paraoxonase-1 (PON1) correlate with the extent and severity of ischemic heart disease (IHD). This article compares apo J and PON1 serum concentrations, PON1 activity, and the apo J/PON1 ratio in 138 IHD patients (64 statins users and 74 statin nonusers) referred for angiography and possible percutaneous coronary intervention. The effect of statin treatment on apo J and PON1 concentrations, PON1 activity, and the degree of coronary artery stenosis were evaluated. In both groups, apo J levels were increased, whereas PON1 concentration and activity decreased. IHD patients on statins had significantly lower apo J concentration and higher PON1 concentration and activity. Patients on statins had less coronary artery stenosis. High apo J levels, low PON1 levels, low PON1 activity, and a high apo J/PON1 ratio were associated with IHD. Statin treatment reverses these changes, probably by multiple beneficial actions.


Assuntos
Arildialquilfosfatase/sangue , Clusterina/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Arildialquilfosfatase/efeitos dos fármacos , Clusterina/efeitos dos fármacos , Angiografia Coronária , Estenose Coronária/sangue , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/sangue , Isquemia Miocárdica/diagnóstico por imagem , Índice de Gravidade de Doença
16.
FASEB J ; 20(14): 2547-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17077289

RESUMO

Increasing evidence suggests that secreted phospholipases A2 (sPLA2s) play an important role in the pathophysiology of atherosclerosis. Among sPLA2s, the human group X (hGX) enzyme has the highest catalytic activity toward phosphatidylcholine, one of the major phospholipid species of cell membranes and low-density lipoprotein (LDL). Our study examined the presence of hGX sPLA2 in human atherosclerotic lesions and investigated the ability of hGX modified LDL to alter human endothelial cell (HUVEC) function. Our results show that hGX sPLA2 is present in human atherosclerotic lesions and that the hydrolysis of LDL by hGX sPLA2 results in a modified particle that induces lipid accumulation in human monocyte-derived macrophages. Acting on endothelial cells, hGX-modified LDL activates the MAP kinase pathway, which leads to increased arachidonic acid release, increased expression of adhesion molecules on the surface of HUVEC, and increased adhesion of monocytes to HUVEC monolayers. Together, our data suggest that LDL modified by hGX, rather than hGX itself may have strong proinflammatory and proatherogenic properties, which could play an important role in the propagation of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , LDL-Colesterol/metabolismo , Células Endoteliais/metabolismo , Fosfolipases A/metabolismo , Artérias/citologia , Aterosclerose/patologia , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Fosfolipases A2 do Grupo X , Humanos , Macrófagos/metabolismo , Fosfolipases A2 , Transporte Proteico , RNA Mensageiro/metabolismo , Veias/citologia
17.
Biochim Biophys Acta ; 1761(11): 1351-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16807087

RESUMO

Plasma Platelet-activating-Factor (PAF)-acetylhydrolase (PAF-AH also named lipoprotein-PLA(2) or PLA(2)G7 gene) is secreted by macrophages, it degrades PAF and oxidation products of phosphatidylcholine produced upon LDL oxidation and/or oxidative stress, and thus is considered as a potentially anti-inflammatory enzyme. Cloning of PAF-AH has sustained tremendous promises towards the use of PAF-AH recombinant protein in clinical situations. The reason for that stems from the numerous animal models of inflammation, atherosclerosis or sepsis, where raising the levels of circulating PAF-AH either through recombinant protein infusion or through the adenoviral gene transfer showed to be beneficial. Unfortunately, neither in human asthma nor in sepsis the recombinant PAF-AH showed sufficient efficacy. One of the most challenging questions nowadays is as to whether PAF-AH is pro- or anti-atherogenic in humans, as PAF-AH may possess a dual pro- and anti-inflammatory role, depending on the concentration and the availability of potential substrates. It is equally possible that the plasma level of PAF-AH is a diagnostic marker of ongoing atherosclerosis.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Aterosclerose/enzimologia , Macrófagos/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/uso terapêutico , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Asma/enzimologia , Aterosclerose/diagnóstico , Aterosclerose/tratamento farmacológico , Biomarcadores/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Lipoproteínas LDL/metabolismo , Oxirredução/efeitos dos fármacos , Fosfatidilcolinas/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Sepse/tratamento farmacológico , Sepse/enzimologia
18.
Fertil Steril ; 79 Suppl 1: 789-94, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12620492

RESUMO

OBJECTIVE: To determine the contribution of endometrial cells in the development of endometriosis. Specifically the response of the mesothelium to endometrial cells in the production of monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), and IL-8 was studied. DESIGN: In vitro study. SETTING: University Research Laboratory. PATIENT(S): None. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Cellular MCP-1, IL-6 secretion and MCP-1, and IL-6 and IL-8 messenger RNA expression were evaluated by ELISA and reverse transcription-polymerase chain reaction (RT-PCR) assay. RESULT(S): The mesothelial cells produced more MCP-1 and IL-6 than endometrial epithelial and stromal cells. Mesothelial cells cultured in the presence of endometrial epithelial cells produced even greater levels of MCP-1 and IL-6 than those cultured in the presence of stromal cells or cultured alone. The MCP-1, IL-6, and IL-8 mRNA expression also increased when mesothelial cells were co-cultured with endometrial epithelial cells. CONCLUSION(S): The results suggest that endometrial epithelial cells may be important in evoking the inflammatory reaction in the peritoneal cavity during retrograde menstruation and that mesothelial cells may play an important role in the chemotaxis of monocytes and in the inflammatory process during the development of endometriosis.


Assuntos
Endometriose/patologia , Peritônio/patologia , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Técnicas de Cocultura , Endometriose/imunologia , Endometriose/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Interleucina-6/biossíntese , Interleucina-6/genética , Interleucina-8/biossíntese , Interleucina-8/genética , Peritônio/imunologia , Peritônio/metabolismo , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Oncology ; 62(2): 115-20, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11914596

RESUMO

BACKGROUND: Tamoxifen has favorable effects on the serum lipid profile. It has been suggested that the apolipoprotein (Apo) E phenotype can influence serum lipid parameters; the ApoE allele 4 (ApoE4) is associated with higher total and low-density lipoprotein (LDL) cholesterol levels. The ApoE phenotype also affects lipid responses to diets or treatment with statins. However, the effect of tamoxifen on the lipid profile in different ApoE phenotypes is unknown. PATIENTS AND METHODS: In the present study, we evaluated the effects of tamoxifen on the serum lipid profile in 11 ApoE4-positive postmenopausal women with breast cancer (phenotypes 3/4 and 4/4) compared with 33 ApoE4-negative women (phenotypes 3/2 and 3/3). Serum lipid parameters [high-density (HDL), LDL and total cholesterol, triglycerides, ApoAI, ApoB and lipoprotein (a)] were measured after an overnight fast before treatment and after 3 and 12 months. ApoE isoforms were determined by isoelectric focusing of delipidated very-low-density lipoproteins (VLDL). RESULTS: During the follow-up period, serum levels of total and LDL cholesterol and ApoB decreased significantly in both groups, but no significant differences were found. Concentrations of serum HDL cholesterol were not significantly different between both groups. However, serum ApoAI levels increased significantly in ApoE4-negative subjects (p = 0.00005), but no significant changes in ApoE4-positive women were observed. Serum triglyceride levels increased by 23.2% (p < 0.05) in ApoE4-positive patients, but they did not change significantly in ApoE4-negative patients. The LDL/HDL cholesterol ratio decreased similarly in the two groups, but the ApoAI/ApoB ratio, which may be a better predictor of cardiovascular events, significantly changed in the ApoE4-negative subjects. Finally, the median level of Lp(a) decreased by 43.4% in the ApoE4-negative patients, whereas it did not change significantly in the ApoE4-positive group. CONCLUSION: In postmenopausal Greek women with breast cancer, the levels of Lp(a) and triglycerides and the ApoAI/ApoB ratio respond more favorably to tamoxifen treatment in ApoE4-negative than in ApoE4-positive patients.


Assuntos
Antineoplásicos Hormonais/farmacologia , Apolipoproteínas E/genética , Neoplasias da Mama/sangue , Moduladores de Receptor Estrogênico/farmacologia , Lipídeos/sangue , Pós-Menopausa/sangue , Tamoxifeno/farmacologia , Idoso , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Moduladores de Receptor Estrogênico/uso terapêutico , Feminino , Humanos , Pessoa de Meia-Idade , Fenótipo , Tamoxifeno/uso terapêutico , Triglicerídeos/sangue
20.
J Lipid Res ; 43(2): 256-63, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11861667

RESUMO

Platelet-activating factor-acetylhydrolase (PAF-AH) is a lipoprotein-associated phospholipase A2 capable of hydrolyzing platelet-activating factor (PAF) and oxidatively modified phospholipids. We studied the plasma- and lipoprotein-associated PAF-AH activity in patients with primary hypercholesterolemia. Thirty-eight unrelated patients with heterozygous familial hypercholesterolemia (HeteroFH), five patients with homozygous FH (HomoFH), and 33 patients with primary non-FH hypercholesterolemia (NonFH) participated in the study. In all patient groups the plasma PAF-AH activity was significantly elevated compared with 33 normolipidemic controls, the HomoFH having the highest and the NonFH patients showing the lowest enzyme activity. Gradient ultracentrifugation studies showed that this increase is not only due to the elevation in the plasma LDL but also to the increase in the PAF-AH activity associated with each LDL subfraction, being more profound in the small-dense LDL-5. Unlike LDL, no difference in the HDL-associated PAF-AH activity was observed among all groups. Consequently, an altered distribution of enzyme activity among apolipoprotein B (apoB)- and apolipoprotein A-I (apoA-I)-containing lipoproteins is observed in hypercholesterolemic patients, resulting in a significant decrease in the ratio of the HDL-associated PAF-AH to the total plasma enzyme activity compared with controls. This reduction is proportional to the increase of the plasma LDL-cholesterol (LDL-C) levels and consequently to the severity of the hypercholesterolemia. Thus, the ratio of HDL-associated PAF-AH-total plasma enzyme activity may be useful as a potential marker of atherogenicity in subjects with primary hypercholesterolemia.


Assuntos
Apolipoproteínas/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Hiperlipoproteinemia Tipo II/enzimologia , Fosfolipases A/sangue , 1-Alquil-2-acetilglicerofosfocolina Esterase , Adulto , Ativação Enzimática , Feminino , Humanos , Hiperlipoproteinemia Tipo II/classificação , Hiperlipoproteinemia Tipo II/genética , Lipoproteínas/sangue , Lipoproteínas/classificação , Lipoproteínas/metabolismo , Masculino , Pessoa de Meia-Idade , Fosfolipases A/metabolismo , Fosfolipases A2 , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA