Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37781924

RESUMO

Type 2 diabetes mellitus (T2DM), characterized by hyperglycemia and dyslipidemia, leads to nonproliferative diabetic retinopathy (NPDR). NPDR is associated with blood-retina barrier disruption, plasma exudates, microvascular degeneration, elevated inflammatory cytokine levels, and monocyte (Mo) infiltration. Whether and how the diabetes-associated changes in plasma lipid and carbohydrate levels modify Mo differentiation remains unknown. Here, we show that mononuclear phagocytes (MPs) in areas of vascular leakage in DR donor retinas expressed perilipin 2 (PLIN2), a marker of intracellular lipid load. Strong upregulation of PLIN2 was also observed when healthy donor Mos were treated with plasma from patients with T2DM or with palmitate concentrations typical of those found in T2DM plasma, but not under high-glucose conditions. PLIN2 expression correlated with the expression of other key genes involved in lipid metabolism (ACADVL, PDK4) and the DR biomarkers ANGPTL4 and CXCL8. Mechanistically, we show that lipid-exposed MPs induced capillary degeneration in ex vivo explants that was inhibited by pharmaceutical inhibition of PPARγ signaling. Our study reveals a mechanism linking dyslipidemia-induced MP polarization to the increased inflammatory cytokine levels and microvascular degeneration that characterize NPDR. This study provides comprehensive insights into the glycemia-independent activation of Mos in T2DM and identifies MP PPARγ as a target for inhibition of lipid-activated MPs in DR.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Dislipidemias , Humanos , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/genética , Retinopatia Diabética/genética , Dislipidemias/metabolismo , Lipídeos , Macrófagos/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Retina/metabolismo
2.
Pharmaceutics ; 15(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37514082

RESUMO

Systemic drugs can treat various retinal pathologies such as retinal cancers; however, their ocular diffusion may be limited by the blood-retina barrier (BRB). Sonication corresponds to the use of ultrasound (US) to increase the permeability of cell barriers including in the BRB. The objective was to study the efficacy and safety of sonication using microbubble-assisted low-intensity pulsed US in inducing a transient opening of the BRB. The eyes of C57/BL6J mice were sonicated at different acoustic pressures (0.10 to 0.50 MPa). Efficacy analyses consisted of fluorescein angiography (FA) performed at different timepoints and the size of the leaked molecules was assessed using FITC-marked dextrans. Tolerance was assessed by fundus photographs, optical coherence tomography, immunohistochemistry, RT-qPCR, and electroretinograms. Sonication at 0.15 MPa was the most suitable pressure for transient BRB permeabilization without altering the morphology or function of the retina. It did not increase the expression of inflammation or apoptosis markers in the retina, retinal pigment epithelium, or choroid. The dextran assay suggested that drugs up to 150 kDa in size can cross the BRB. Microbubble-assisted sonication at an optimized acoustic pressure of 0.15 MPa provides a non-invasive method to transiently open the BRB, increasing the retinal diffusion of systemic drugs without inducing any noticeable side-effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA