Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 273: 107031, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39067263

RESUMO

Organic anion transporting polypeptides (OATPs) facilitate the cellular uptake of a large number of compounds. Zebrafish Oatp1d1 matches the functional capabilities of human OATP orthologs, particularly in hormone and drug transport. It is highly expressed in the liver and later stages of embryonic development, indicating its critical role in zebrafish physiology and development. Data from previous in vitro analyses have shown a high affinity of zebrafish Oatp1d1 for pharmaceuticals and xenobiotics, providing the basis for further in vivo studies on its defence and developmental functions. Using CRISPR-Cas9 technology, we have generated an Oatp1d1 zebrafish mutant that has highly reduced Oatp1d1 expression in embryos and adult tissues compared to wild type (WT). The absence of Oatp1d1 was confirmed using custom-made antibodies. To evaluate its ecotoxicological relevance, mutant and WT embryos were exposed to increasing concentrations of diclofenac, an NSAID known for its wide and frequent use, environmental pseudo-persistence and ecological implications. WT embryos showed developmental delays and malformations such as spinal curvature, cardiac edema and blood pooling at higher diclofenac concentrations, whereas the Oatp1d1 mutant embryos showed marked resilience, with milder developmental defects and delayed toxic effects. These observations suggest that the absence of Oatp1d1 impedes the efficient entry of diclofenac into hepatocytes, thereby slowing its biotransformation into potentially more toxic metabolites. In addition, the changes in transcript expression of other uptake transporters revealed a highly probable and complex network of compensatory mechanisms. Therefore, the results of this study point to the importance of Oatp1d1-mediated transport of diclofenac, as demonstrated for the first time in vivo using an Oatp1 deficient zebrafish line. Finally, our data indicates that the compensatory role of other transporters with overlapping substrate preferences needs to be considered for a reliable understanding of the physiological and/or defensive role(s) of membrane transporters.


Assuntos
Diclofenaco , Embrião não Mamífero , Transportadores de Ânions Orgânicos , Poluentes Químicos da Água , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Diclofenaco/toxicidade , Poluentes Químicos da Água/toxicidade , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Técnicas de Inativação de Genes
2.
Microsc Res Tech ; 86(3): 294-310, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36453864

RESUMO

The increasing use of the zebrafish model in biomedical and (eco)toxicological studies aimed at understanding the function of various proteins highlight the importance of optimizing existing methods to study gene and protein expression and localization in this model. In this context, zebrafish cryosections are still underutilized compared with whole-mount preparations. In this study, we used zebrafish embryos (24-120 hpf) to determine key factors for the preparation of high-quality zebrafish cryosections and to determine the optimal protocol for (immuno)fluorescence analyses of Na+ /K+ -ATPase and F-actin, across developmental stages from 1 to 5 dpf. The results showed that the highest quality zebrafish cryosections were obtained after the samples were fixed in 4% paraformaldehyde (PFA) for 1 h, incubated in 2.5% bovine gelatin/25% sucrose mixture, embedded in OCT, and then sectioned to 8 µm thickness at -20°C. Fluorescence microscopy analysis of phalloidin-labeled zebrafish skeletal muscle revealed that 1-h-4% PFA-fixed samples allowed optimal binding of phalloidin to F-actin. Further immunofluorescence analyses revealed detailed localization of F-actin and Na+ /K+ -ATPase in various tissues of the zebrafish and a stage-dependent increase in their respective expression in the somitic muscles and pronephros. Finally, staining of zebrafish cryosections and whole-mount samples revealed organ-specific and zone-dependent localizations of the Na+ /K+ -ATPase α1-subunit. RESEARCH HIGHLIGHTS: This study brings optimization of existing protocols for preparation and use of zebrafish embryos cryosections in (immuno)histological analyses. It reveals stage-dependent localization/expression of F-actin and Na+ /K+ -ATPase in zebrafish embryos.


Assuntos
Actinas , Peixe-Zebra , Animais , Bovinos , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Faloidina/metabolismo , Crioultramicrotomia
3.
Artigo em Inglês | MEDLINE | ID: mdl-35483776

RESUMO

Aging-related impaired body structure and functions may be, at least partially, caused by elevated oxidative stress. Melatonin (MEL) and resveratrol (RSV) may act as antioxidant and anti-aging compounds, but these actions in experimental animals and humans are controversial. Herein, a rat model of aging was used to study the long-term sex-related effects of MEL and RSV treatment on body mass and blood/plasma parameters of DNA damage, oxidative status (glutathione and malondialdehyde levels), and concentrations of sex hormones. Starting from the age of 3mo, for the next 9mo or 21mo male and female Wistar rats (n = 4-7 per group) were given water to drink (controls) or 0.1 % ethanol in water (vehicle), or MEL or RSV (each 10 mg/L vehicle). DNA damage in whole blood cells was tested by comet assay, whereas in plasma, glutathione, malondialdehyde, and sex hormones were determined by established methods. Using statistical analysis of data by ANOVA/Scheffe post hoc, we observed a similar sex- and aging-dependent rise of body mass in both sexes and drop of plasma testosterone in control and vehicle-treated male rats, whose pattern remained unaffected by MEL and RSV treatment. Compared with controls, all other parameters remained largely unchanged in aging and differently treated male and female rats. We concluded that the sex- and aging-related pattern of growth and various blood parameters in rats were not affected by the long-term treatment with MEL and RSV at the estimated daily doses (300-400 µg/kg b.m.) that exceed usual moderate consumption in humans.


Assuntos
Melatonina , Envelhecimento , Animais , Biomarcadores , Feminino , Glutationa , Masculino , Malondialdeído , Melatonina/farmacologia , Ratos , Ratos Wistar , Resveratrol/farmacologia , Água
4.
Mycotoxin Res ; 36(4): 339-352, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32653990

RESUMO

Ochratoxin A (OTA) and citrinin (CIT) are mycotoxins known to co-contaminate human/animal food/feed. Their prominent nephrotoxic effects pose a threat to human and animal health. Studies have shown synergistic or additive effects of these two mycotoxins, but a clear consensus on this phenomenon does not exist. In vitro/vivo studies on OTA and CIT effects showed they elevate oxidative stress parameters. Some in vitro studies tested resveratrol (RSV) as a potential antioxidant to counteract these OTA and CIT effects. However, data on the combined effects of OTA + CIT mycotoxins and RSV on their in vivo toxicity is lacking. We used immunofluorescence microscopy and Western blotting to study the subchronic effects of individual/combined OTA (0.125 and 0.250 mg kg-1 b.w.) and CIT (20 mg kg-1 b.w.) on the localization/expression of rat renal organic anion transporters (rOats) (rOat1/Slc22a6, rOat2/Slc22a7, rOat3/Slc22a8, rOat5/Slc22a19) that mediate the secretion/reabsorption of organic anions in kidney proximal tubules. We investigated if RSV (20 mg kg-1 b.w.) can counteract the effects of both mycotoxins on the localization/expression of studied transporters. Results revealed Oat- and dose-dependent changes in protein expression of rOats. When combined with both mycotoxins, RSV decreased the protein expression of all of the studied rOats. Its effect was additive on Oat1/2/5. Thus, RSV failed to ameliorate OTA- and/or CIT-related nephrotoxic effects on the expression of studied rOats in rat kidneys.


Assuntos
Citrinina/administração & dosagem , Rim/efeitos dos fármacos , Ocratoxinas/administração & dosagem , Transportadores de Ânions Orgânicos/genética , Animais , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
5.
Arh Hig Rada Toksikol ; 69(4): 278-285, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30864374

RESUMO

Glucose, the key source of metabolic energy, is imported into cells by two categories of transporters: 1) facilitative glucose transporters (GLUTs) and 2) secondary active sodium-glucose cotransporters (SGLTs). Cancer cells have an increased demand for glucose uptake and utilisation compared to normal cells. Previous studies have demonstrated the overexpression of GLUTs, mainly GLUT1, in many cancer types. As the current standard positron emission tomography (PET) tracer 2-deoxy-2-(18F)fluoro-D-glucose (2-FDG) for imaging tumour cells via GLUT1 lacks in sensitivity and specificity, it may soon be replaced by the newly designed, highly sensitive and specific SGLT tracer α-methyl-4-(F-18)fluoro-4-deoxy-Dglucopyranoside (Me-4FDG) in clinical detection and tumour staging. This tracer has recently demonstrated the functional activity of SGLT in pancreatic, prostate, and brain cancers. The mRNA and protein expression of SGLTs have also been reported in colon/colorectal, lung, ovarian, head, neck, and oral squamous carcinomas. So far, SGLTs have been poorly investigated in cancer, and their protein expression and localisation are often controversial due to a lack of specific SGLT antibodies. In this review, we describe current knowledge concerning SGLT1 and SGLT2 (over)expression in various cancer types. The findings of SGLTs in malignant cells may help in developing novel cancer therapies with SGLT2 or SGLT1/SGLT2 inhibitors already used in diabetes mellitus treatment.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias/diagnóstico , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Transporte de Sódio-Glucose/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Am J Physiol Renal Physiol ; 311(1): F227-38, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053689

RESUMO

The initial step in renal secretion of organic anions (OAs) is mediated by transporters in the basolateral membrane (BLM). Contributors to this process are primary active Na(+)-K(+)-ATPase (EC 3.6.3.9), secondary active Na(+)-dicarboxylate cotransporter 3 (NaDC3/SLC13A3), and tertiary active OA transporters (OATs) OAT1/SLC22A6, OAT2/SLC22A7, and OAT3/SLC22A8. In human kidneys, we analyzed the localization of these transporters by immunochemical methods in tissue cryosections and isolated membranes. The specificity of antibodies was validated with human embryonic kidney-293 cells stably transfected with functional OATs. Na(+)-K(+)-ATPase was immunolocalized to the BLM along the entire human nephron. NaDC3-related immunostaining was detected in the BLM of proximal tubules and in the BLM and/or luminal membrane of principal cells in connecting segments and collecting ducts. The thin and thick ascending limbs, macula densa, and distal tubules exhibited no reactivity with the anti-NaDC3 antibody. OAT1-OAT3-related immunostaining in human kidneys was detected only in the BLM of cortical proximal tubules; all three OATs were stained more intensely in S1/S2 segments compared with S3 segment in medullary rays, whereas the S3 segment in the outer stripe remained unstained. Expression of NaDC3, OAT1, OAT2, and OAT3 proteins exhibited considerable interindividual variability in both male and female kidneys, and sex differences in their expression could not be detected. Our experiments provide a side-by-side comparison of basolateral transporters cooperating in renal OA secretion in the human kidney.


Assuntos
Transportadores de Ácidos Dicarboxílicos/metabolismo , Néfrons/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Simportadores/metabolismo , Adulto , Feminino , Células HEK293 , Humanos , Medula Renal/metabolismo , Túbulos Renais Coletores/metabolismo , Túbulos Renais Distais/metabolismo , Masculino , Membranas/metabolismo , Pessoa de Meia-Idade , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Caracteres Sexuais , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Croat Med J ; 56(5): 447-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26526882

RESUMO

AIM: To investigate whether the sex-dependent expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) changes in a rat model of ethylene glycol (EG)-induced hyperoxaluria. METHODS: Rats were given tap water (12 males and 12 females; controls) or EG (12 males and 12 females; 0.75% v/v in tap water) for one month. Oxaluric state was confirmed by biochemical parameters in blood plasma, urine, and tissues. Expression of sat-1 and rate-limiting enzymes of oxalate synthesis, alcohol dehydrogenase 1 (Adh1) and hydroxy-acid oxidase 1 (Hao1), was determined by immunocytochemistry (protein) and/or real time reverse transcription polymerase chain reaction (mRNA). RESULTS: EG-treated males had significantly higher (in µmol/L; mean±standard deviation) plasma (59.7±27.2 vs 12.9±4.1, P<0.001) and urine (3716±1726 vs 241±204, P<0.001) oxalate levels, and more abundant oxalate crystaluria than controls, while the liver and kidney sat-1 protein and mRNA expression did not differ significantly between these groups. EG-treated females, in comparison with controls had significantly higher (in µmol/L) serum oxalate levels (18.8±2.9 vs 11.6±4.9, P<0.001), unchanged urine oxalate levels, low oxalate crystaluria, and significantly higher expression (in relative fluorescence units) of the liver (1.59±0.61 vs 0.56±0.39, P=0.006) and kidney (1.77±0.42 vs 0.69±0.27, P<0.001) sat-1 protein, but not mRNA. The mRNA expression of Adh1 was female-dominant and that of Hao1 male-dominant, but both were unaffected by EG treatment. CONCLUSIONS: An increased expression of hepatic and renal oxalate transporting protein sat-1 in EG-treated female rats could protect from hyperoxaluria and oxalate urolithiasis.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Etilenoglicol/uso terapêutico , Hiperoxalúria/prevenção & controle , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Antiporters/genética , Western Blotting , Oxalato de Cálcio/sangue , Oxalato de Cálcio/urina , Cromatografia Líquida de Alta Pressão , Feminino , Hiperoxalúria/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais , Transportadores de Sulfato
8.
Am J Physiol Renal Physiol ; 308(8): F809-21, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25656365

RESUMO

In the mammalian kidney, nonglycosylated and glycosylated forms of aquaporin protein 1 (AQP1) coexist in the luminal and basolateral plasma membranes of proximal tubule and descending thin limb. Factors that influence AQP1 expression in (patho)physiological conditions are poorly known. Thus far, only angiotensin II and hypertonicity were found to upregulate AQP1 expression in rat proximal tubule in vivo and in vitro (Bouley R, Palomino Z, Tang SS, Nunes P, Kobori H, Lu HA, Shum WW, Sabolic I, Brown D, Ingelfinger JR, Jung FF. Am J Physiol Renal Physiol 297: F1575-F1586, 2009), a phenomenon that may be relevant for higher blood pressure observed in men and male experimental animals. Here we investigated the sex-dependent AQP1 protein and mRNA expression in the rat kidney by immunochemical methods and qRT-PCR in tissue samples from prepubertal and intact gonadectomized animals and sex hormone-treated gonadectomized adult male and female animals. In adult rats, the overall renal AQP1 protein and mRNA expression was ∼80% and ∼40% higher, respectively, in males than in females, downregulated by gonadectomy in both sexes and upregulated strongly by testosterone and moderately by progesterone treatment; estradiol treatment had no effect. In prepubertal rats, the AQP1 protein expression was low compared with adults and slightly higher in females, whereas the AQP1 mRNA expression was low and similar in both sexes. The observed differences in AQP1 protein expression in various experiments mainly reflect changes in the glycosylated form. The male-dominant expression of renal AQP1 in rats, which develops after puberty largely in the glycosylated form of the protein, may contribute to enhanced fluid reabsorption following the androgen- or progesterone-stimulated activities of sodium-reabsorptive mechanisms in proximal tubules.


Assuntos
Aquaporina 1/metabolismo , Néfrons/metabolismo , Fatores Etários , Animais , Aquaporina 1/efeitos dos fármacos , Aquaporina 1/genética , Estradiol/administração & dosagem , Terapia de Reposição de Estrogênios , Feminino , Regulação da Expressão Gênica , Taxa de Filtração Glomerular , Glicosilação , Masculino , Néfrons/efeitos dos fármacos , Orquiectomia , Concentração Osmolar , Ovariectomia , Progesterona/administração & dosagem , RNA Mensageiro/metabolismo , Ratos Wistar , Eliminação Renal , Fatores Sexuais , Maturidade Sexual , Testosterona/administração & dosagem , Urodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA