Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orofac Orthop ; 78(1): 21-31, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27909759

RESUMO

PURPOSE: The present study aimed to investigate the long-term effects of hydrostatic pressure on chondrocyte differentiation, as indicated by protein levels of transcription factors SOX9 and RUNX2, on transcriptional activity of SOX9, as determined by pSOX9 levels, and on the expression of polycystin-encoding genes Pkd1 and Pkd2. MATERIALS AND METHODS: ATDC5 cells were cultured in insulin-supplemented differentiation medium (ITS) and/or exposed to 14.7 kPa of hydrostatic pressure for 12, 24, 48, and 96 h. Cell extracts were assessed for SOX9, pSOX9, and RUNX2 using western immunoblotting. The Pkd1 and Pkd2 mRNA levels were detected by real-time PCR. RESULTS: Hydrostatic pressure resulted in an early drop in SOX9 and pSOX9 protein levels at 12 h followed by an increase from 24 h onwards. A reverse pattern was followed by RUNX2, which reached peak levels at 24 h of hydrostatic pressure-treated chondrocytes in ITS culture. Pkd1 and Pkd2 mRNA levels increased at 24 h of combined hydrostatic pressure and ITS treatment, with the latter remaining elevated up to 96 h. CONCLUSIONS: Our data indicate that long periods of continuous hydrostatic pressure stimulate chondrocyte differentiation through a series of molecular events involving SOX9, RUNX2, and polycystins-1, 2, providing a theoretical background for functional orthopedic mechanotherapies.


Assuntos
Diferenciação Celular/fisiologia , Condrócitos/citologia , Condrócitos/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Mecanotransdução Celular/fisiologia , Fatores de Transcrição SOX9/metabolismo , Animais , Linhagem Celular , Condrogênese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Pressão Hidrostática , Camundongos , Estresse Mecânico
2.
Biochim Biophys Acta ; 1852(9): 1700-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26004394

RESUMO

The skeleton is subject to dynamic changes throughout life and bone remodeling is essential for maintenance of bone functionality. The cell populations which predominantly participate in bone and cartilage remodeling, namely osteocytes, osteoblasts, osteoclasts and chondrocytes sense and respond to external mechanical signals and via a series of molecular cascades control bone metabolism and turnover rate. The aforementioned process, known as mechanotransduction, is the underlying mechanism that controls bone homeostasis and function. A wide array of cross-talking signaling pathways has been found to play an important role in the preservation of bone and cartilage tissue health. Moreover, alterations in bone mechanotransduction pathways, due to genetic, hormonal and biomechanical factors, are considered responsible for the pathogenesis of bone and cartilage diseases. Extensive research has been conducted and demonstrated that aberrations in mechanotransduction pathways result in disease-like effects, however only few signaling pathways have actually been engaged in the development of bone disease. The aim of the present review is to present these signaling molecules and cascades that have been found to be mechano-responsive and implicated in bone disease development, as revealed by research in the last five years. In addition, the role of these molecules as prognostic or diagnostic disease markers and their potential as therapeutic targets are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA