Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e33204, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022099

RESUMO

Sine oculis homeoprotein 1 (SIX1), a prominent representative of the homeodomain transcription factors within the SIX family, has attracted significant interest owing to its role in tumorigenesis, cancer progression, and prognostic assessments. Initially recognized for its pivotal role in embryonic development, SIX1 has emerged as a resurgent factor across a diverse set of mammalian cancers. Over the past two decades, numerous investigations have emphasized SIX1's dual significance as a developmental regulator and central player in oncogenic processes. A mounting body of evidence links SIX1 to the initiation of diverse cancers, encompassing enhanced cellular metabolism and advancement. This review provides an overview of the multifaceted roles of SIX1 in both normal development and oncogenic processes, emphasizing its importance as a possible therapeutic target and prognostic marker. Additionally, this review discusses the natural product agents that inhibit various pro-oncogenic mechanisms associated with SIX1.

2.
Mol Oncol ; 18(8): 1966-1979, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38605607

RESUMO

The androgen receptor (AR) is the main driver in the development of castration-resistant prostate cancer, where the emergence of AR splice variants leads to treatment-resistant disease. Through detailed molecular studies of the marine alkaloid manzamine A (MA), we identified transcription factor E2F8 as a previously unknown regulator of AR transcription that prevents AR synthesis in prostate cancer cells. MA significantly inhibited the growth of various prostate cancer cell lines and was highly effective in inhibiting xenograft tumor growth in mice without any pathophysiological perturbations in major organs. MA suppressed the full-length AR (AR-FL), its spliced variant AR-V7, and the AR-regulated prostate-specific antigen (PSA; also known as KLK3) and human kallikrein 2 (hK2; also known as KLK2) genes. RNA sequencing (RNA-seq) analysis and protein modeling studies revealed E2F8 interactions with DNA as a potential novel target of MA, suppressing AR transcription and its synthesis. This novel mechanism of blocking AR biogenesis via E2F8 may provide an opportunity to control therapy-resistant prostate cancer over the currently used AR antagonists designed to target different parts of the AR gene.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Transcrição Gênica , Masculino , Animais , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , DNA/metabolismo
4.
Cancer ; 129(23): 3783-3789, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37698493

RESUMO

BACKGROUND: This study aimed to understand the differential levels of inflammatory chemokines in association with higher prostate cancer incidence and mortality in African American (AA) men than in Caucasians (CA). METHODS: The authors used a chemokine assay to simultaneously measure 40 chemokines and cytokines levels in the serum of preoperative prostate cancer patients and healthy controls of AA and CA races. Selected chemokines (CXCL2, CXCL5, and CCL23) serum level was validated in 211 serum samples from prostate cancer patients and healthy controls. Differential expression of CXCL5 and CCL23 was analyzed using immunohistochemistry in a representative cohort of prostate tumor tissues of AA and CA races. RESULTS: Race-specific comparisons from 211 serum samples showed significantly higher levels of CXCL2 (control: 3104.0 pg/mL vs. cancer: 2451.0 pg/mL) and CXCL5 (control: 5189.0 pg/mL vs. cancer: 5459.0 pg/mL) in AA men than in CAs (CXCL2; control: 1155.0 pg/mL vs. cancer: 889.3 pg/mL, and CXCL5; control: 1183.0 pg/mL vs. cancer: 977.5 pg/mL). CCL23 differed significantly within and between the races with a lower level in AA cancer cases (454.5 vs. 966.6 pg/mL) than healthy controls (740.5 vs. 1263.0 pg/mL). Patient age, prostate-specific antigen, or Gleason scores were not significantly associated with these chemokines. Immunostaining for CXCL5 and CCL23 in a representative cohort of archival prostate tissues displayed significantly higher CXCL5 in prostate tumors than in adjacent benign tissues, whereas CCL23 was nondetectable in most of the analyzed tumor tissues. CONCLUSION: Lower levels of CCL23 in AA prostate cancer patient sera and tumor tissues and high CXCL2 and CXCL5 may contribute to aggressive prostate cancer, as often seen in AA men. The disproportionate levels of serum chemokines associated with race warrant further exploration to improve equitability in precision oncology to benefit prostate cancer patients.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Fatores Raciais , Neoplasias da Próstata/patologia , Quimiocinas , Antígeno Prostático Específico
5.
Cancers (Basel) ; 15(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37345101

RESUMO

Epigenetic alterations such as DNA methylation and histone modifications are implicated in repressing several tumor suppressor genes in prostate cancer progression. In this study, we determined the anti-prostate cancer effect of a small molecule drug guadecitabine (gDEC) that inhibits/depletes the DNA methylation writer DNA methyltransferase 1 (DNMT1). gDEC inhibited prostate cancer cell growth and proliferation in vitro without activating the apoptotic cascade. Molecular studies confirmed DNMT1 depletion and modulated epithelial-mesenchymal transition markers E-cadherin and ß-catenin in several prostate cancer cell lines (LNCaP, 22Rv1, and MDA PCa 2b). gDEC treatment also significantly inhibited prostate tumor growth in vivo in mice (22Rv1, MDA PCa 2b, and PC-3 xenografts) without any observed toxicities. gDEC did not impact the expression of androgen receptor (AR) or AR-variant 7 (AR-V7) nor sensitize the prostate cancer cells to the anti-androgen enzalutamide in vitro. In further investigating the mechanism of cytoreduction by gDEC, a PCR array analyses of 84 chromatin modifying enzymes demonstrated upregulation of several lysine-specific methyltransferases (KMTs: KMT2A, KMT2C, KMT2E, KMT2H, KMT5A), confirmed by additional expression analyses in vitro and of harvested xenografts. Moreover, gDEC treatment increased global histone 3 lysine 4 mono-and di-methylation (H3K4me1 and H3K4me2). In sum, gDEC, in addition to directly depleting the corepressor DNMT1, upregulated KMT activating epigenetic enzymes, activating terminal epithelial program activation, and prostate cancer cell cycling exits independent of apoptosis.

6.
Front Oncol ; 11: 727583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671553

RESUMO

Endoplasmic reticulum (ER) stress is a cellular process in response to stress stimuli in protecting functional activities. However, sustained hyperactive ER stress influences tumor growth and development. Hepatocytes are enriched with ER and highly susceptible to ER perturbations and stress, which contribute to immunosuppression and the development of aggressive and drug-resistant hepatocellular carcinoma (HCC). ER stress-induced inflammation and tumor-derived chemokines influence the immune cell composition at the tumor site. Consequently, a decrease in the CCL23 chemokine in hepatic tumors is associated with poor survival of HCC patients and could be a mechanism hepatic tumor cells use to evade the immune system. This article describes the prospective role of CCL23 in alleviating ER stress and its impact on the HCC tumor microenvironment in promoting antitumor immunity. Moreover, approaches to reactivate CCL23 combined with immune checkpoint blockade or chemotherapy drugs may provide novel opportunities to target hepatocellular carcinoma.

7.
Mar Drugs ; 19(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34564169

RESUMO

Manzamines are complex polycyclic marine-derived ß-carboline alkaloids with reported anticancer, immunostimulatory, anti-inflammatory, antibacterial, antiviral, antimalarial, neuritogenic, hyperlipidemia, and atherosclerosis suppression bioactivities, putatively associated with inhibition of glycogen synthase kinase-3, cyclin-dependent kinase 5, SIX1, and vacuolar ATPases. We hypothesized that additional, yet undiscovered molecular targets might be associated with Manzamine A's (MZA) reported pharmacological properties. We report here, for the first time, that MZA selectively inhibited a 90 kDa ribosomal protein kinase S6 (RSK1) when screened against a panel of 30 protein kinases, while in vitro RSK kinase assays demonstrated a 10-fold selectivity in the potency of MZA against RSK1 versus RSK2. The effect of MZA on inhibiting cellular RSK1 and RSK2 protein expression was validated in SiHa and CaSki human cervical carcinoma cell lines. MZA's differential binding and selectivity toward the two isoforms was also supported by computational docking experiments. Specifically, the RSK1-MZA (N- and C-termini) complexes appear to have stronger interactions and preferable energetics contrary to the RSK2-MZA ones. In addition, our computational strategy suggests that MZA binds to the N-terminal kinase domain of RSK1 rather than the C-terminal domain. RSK is a vertebrate family of cytosolic serine-threonine kinases that act downstream of the ras-ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, which phosphorylates substrates shown to regulate several cellular processes, including growth, survival, and proliferation. Consequently, our findings have led us to hypothesize that MZA and the currently known manzamine-type alkaloids isolated from several sponge genera may have novel pharmacological properties with unique molecular targets, and MZA provides a new tool for chemical-biology studies involving RSK1.


Assuntos
Antineoplásicos/uso terapêutico , Carbazóis/uso terapêutico , Poríferos , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Organismos Aquáticos , Carbazóis/química , Carbazóis/farmacologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular
8.
J Immunol Res ; 2021: 9483433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485538

RESUMO

Medicinal plants serve as a lead source of bioactive compounds and have been an integral part of day-to-day life in treating various disease conditions since ancient times. Withaferin A (WFA), a bioactive ingredient of Withania somnifera, has been used for health and medicinal purposes for its adaptogenic, anti-inflammatory, and anticancer properties long before the published literature came into existence. Nearly 25% of pharmaceutical drugs are derived from medicinal plants, classified as dietary supplements. The bioactive compounds in these supplements may serve as chemotherapeutic substances competent to inhibit or reverse the process of carcinogenesis. The role of WFA is appreciated to polarize tumor-suppressive Th1-type immune response inducing natural killer cell activity and may provide an opportunity to manipulate the tumor microenvironment at an early stage to inhibit tumor progression. This article signifies the cumulative information about the role of WFA in modulating antitumor immunity and its potential in targeting prostate cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Withania/química , Vitanolídeos/farmacologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Modelos Animais de Doenças , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Masculino , Próstata/efeitos dos fármacos , Próstata/imunologia , Próstata/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Vitanolídeos/uso terapêutico
9.
Cancers (Basel) ; 12(10)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081054

RESUMO

In this study, we investigated the potential of MIC-1 (macrophage inhibitory cytokine-1) on the severity of prostate cancer between African American men and Caucasians. Differences between the races were examined using Mann-Whitney tests for continuous variables and Fisher's exact tests for categorical variables. Pearson's correlation coefficient was used to identify associations between continuous measures across all samples and within each race. Analysis of variance, including clinical parameters, was used to identify differences in serum and urine MIC-1 levels between races. We found significant differences between the two races for age (p = 0.01), Gleason scores (p = 0.01), and stage of disease (p = 0.03). African American men in the study had higher Gleason scores (mean = 6.9) than Caucasians (mean = 6.5), during earlier stages of the disease. In Caucasian men with prostate cancer, serum MIC-1 expression was positively associated with age (r = 0.7, p < 0.01). However, African American men had highly expressed MIC-1 and high Gleason scores (r = 0.16, p = 0.3). Interestingly, the urine MIC-1 level was significantly higher in African American men with prostate cancer than in Caucasian patients. It appeared to be more sensitive and specific for African Americans (AUC = 0.85 vs. 0.56). Thus, high circulatory MIC-1 in prostate cancer patients may indicate MIC-1 as a potential biomarker to improve the diagnostic ability of an aggressive stage of prostate cancer in African American men. However, a larger cohort of sample analysis is required to validate these observations.

10.
J Nat Prod ; 83(2): 286-295, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32022559

RESUMO

Natural products remain an important source of drug leads covering unique chemical space and providing significant therapeutic value for the control of cancer and infectious diseases resistant to current drugs. Here, we determined the antiproliferative activity of a natural product manzamine A (1) from an Indo-Pacific sponge following various in vitro cellular assays targeting cervical cancer (C33A, HeLa, SiHa, and CaSki). Our data demonstrated the antiproliferative effects of 1 at relatively low and non-cytotoxic concentrations (up to 4 µM). Mechanistic investigations confirmed that 1 blocked cell cycle progression in SiHa and CaSki cells at G1/S phase and regulated cell cycle-related genes, including restoration of p21 and p53 expression. In apoptotic assays, HeLa cells showed the highest sensitivity to 1 as compared to other cell types (C33A, SiHa, and CaSki). Interestingly, 1 decreased the levels of the oncoprotein SIX1, which is associated with oncogenesis in cervical cancer. To further investigate the structure-activity relationship among manzamine A (1) class with potential antiproliferative activity, molecular networking facilitated the efficient identification, dereplication, and assignment of structures from the manzamine class and revealed the significant potential in the design of optimized molecules for the treatment of cervical cancer. These data suggest that this sponge-derived natural product class warrants further attention regarding the design and development of novel manzamine analogues, which may be efficacious for preventive and therapeutic treatment of cancer. Additionally, this study reveals the significance of protecting fragile marine ecosystems from climate change-induced loss of species diversity.


Assuntos
Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Carbazóis/farmacologia , Proteínas de Homeodomínio/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Produtos Biológicos/química , Carbazóis/química , Linhagem Celular Tumoral , Ecossistema , Feminino , Células HeLa , Proteínas de Homeodomínio/química , Humanos , Relação Estrutura-Atividade , Neoplasias do Colo do Útero/química
11.
Front Immunol ; 9: 195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479354

RESUMO

A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1ß), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1ß and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1ß and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases.


Assuntos
Quimiocinas/genética , Citocinas/genética , Inflamação/genética , Vitanolídeos/farmacologia , Trifosfato de Adenosina , Quimiocinas/imunologia , Citocinas/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamassomos/genética , Inflamação/imunologia , NF-kappa B/metabolismo , Nigericina , Análise de Sequência com Séries de Oligonucleotídeos , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Células THP-1
12.
Front Immunol ; 9: 3028, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30631327

RESUMO

Inflammation has an established role in cancer development and progression and is a key player in regulating the entry and exit of immune cells in the tumor microenvironment, mounting a significant impact on anti-tumor immunity. Recent studies have shed light on the role of inflammasomes in the regulation of inflammation with a focus on the subsequent effects on the immunobiology of tumors. To generate strong anti-tumor immunity, cross-talk between innate, and adaptive immune cells is necessary. Interestingly, inflammasome bridges both arms of the immune system representing a unique opportunity to manipulate the role of inflammation in favor of tumor suppression. In this review, we discuss the impact of inflammasomes on the regulation of the levels of inflammatory cytokines-chemokines and the efficacy of immunotherapy response in cancer treatment.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Inflamassomos/imunologia , Inflamação/imunologia , Neoplasias/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos/farmacologia , Caspases/imunologia , Caspases/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
13.
Vaccine ; 35(43): 5794-5798, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28939158

RESUMO

We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad5-PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad5-PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8+ T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad5-PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8+ T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad5-PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Humanos , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Vacinação/métodos
14.
Sci Rep ; 7(1): 4378, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663562

RESUMO

Inflammasomes are multi-proteins complex regulating inflammation-associated signaling. While inflammation plays a critical role in cancer cell growth, studies remain uncharacterized on the role of inflammasomes in prostate cancer. Using Gene Expression Omnibus (GEO) public datasets, we screened the expression profiles of inflammasome sensors NLRP3, NLRC4, NLRP6, NRLP12, and AIM2 in prostate tumor tissues, and verified their mRNA level in a panel of prostate cancer cell lines. The selected expression of NLRP3 and NLRP12 inflammasomes was validated, and the clinical association was evaluated in human prostate archival tumor tissues. We observed that the expression of inflammasome sensors was dysregulated at the mRNA level except for the NLRP12. The intensity of NLRP12 immunostaining was significantly higher in malignant prostate as compared to their adjacent benign tissues. In contrast, the NLRP3 immunostaining in prostate tissues was heterogeneous. The inflammasome complex proteins ASC (apoptosis-associated speck-like protein containing a CARD) and pro-caspase-1, as well as its downstream targets IL-1ß and IL-18 were confined to aggressive prostate cancer cells. These data suggest an increased expression of NLRP12 in association with prostate cancer and support the role of NLRP12 inflammasome complex regulating inflammatory cytokines in understanding the role of inflammation in the prostate cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Inflamassomos/genética , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Biologia Computacional/métodos , Bases de Dados Genéticas , Humanos , Imuno-Histoquímica , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
15.
Adv Urol ; 2016: 3140372, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27429614

RESUMO

Inflammation-associated studies entice specific attention due to inflammation's role in multiple stages of prostate cancer development. However, mechanistic regulation of inflammation inciting prostate cancer remains largely uncharacterized. A focused class of inflammatory regulators known as inflammasomes has recently gained attention in cancer development. Inflammasomes are a multiprotein complex that drives a cascade of proinflammatory cytokines regulating various cellular activities. Inflammasomes activation is linked with infection, stress, or danger signals, which are common events within the prostate gland. In this study, we review the potential of inflammasomes in understanding the role of inflammation in prostate cancer.

17.
Oncol Lett ; 3(5): 1166-1170, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22783412

RESUMO

Macrophage inhibitory cytokine-1 (MIC-1), also known as prostate-derived factor (PDF), is a molecule of the TGF-ß superfamily and has been associated with the progression of various types of diseases including prostate cancer. Initially identified from activated macrophages, the MIC-1 gene may provide a potential link between inflammation and prostate cancer. In this context, we performed MIC-1 expression analysis using mouse prostate tissues to determine whether there was any correlation with age and inflammation. Reverse transcription PCR analysis on RNA samples isolated from prostate lobes from prostate-specific antigen transgenic mice of varying ages revealed that MIC-1 gene expression is extremely low to non-detectable in the prostate tissues obtained from young mice, while its expression increases in the prostate tissues harvested from elderly mice. Increased MIC-1 gene expression in the mouse prostate was found to be associated with an increased level of infiltrating lymphocytes. To confirm this observation, we showed that inflammation-associated cytokines (IL-1ß and TNF-α) significantly upregulate the secretion of the MIC-1 protein in a human prostate cancer cell line (LNCaP cells), while cytokines IL-6 and granulocyte macrophage colony-stimulating factor were less effective. Taken together, these data indicated that inflammation-associated cytokines may play a critical role in the functional regulation of the MIC-1 gene in the early stages of prostate cancer development. More studies are required to understand the biological activity of MIC-1 gene regulation in the development and progression of prostate cancer.

18.
Immunotherapy ; 4(6): 577-80, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22788125

RESUMO

Evaluation of: van den Eertwegh AJ, Versluis J, van den Berg HP et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a Phase 1 dose-escalation trial. Lancet Oncol. 13(5), 509 ­ 517 (2012). A significant interest in the development of therapeutic cancer vaccines over the last decade has led to an improvement in overall survival of cancer patients in several clinical trials. As a result, two active immunotherapy agents, sipuleucel-T and ipilimumab, have been approved by the US FDA for the treatment of prostate cancer and melanoma, respectively. GVAX(®) cellular vaccine (Cell Genesysis, Inc., CA, USA) is another active immunotherapy agent targeting prostate cancer and it has been well studied in various clinical trials. The current publication, by van den Eertwegh et al., demonstrated a combination of two active immunotherapy approaches, using GVAX and ipilimumab for the treatment of metastatic castration-resistant prostate cancer. While GVAX is designed to amplify the antitumor response specific to prostate cancer cells, ipilimumab contributes to T-cell activation. Thus, the authors presented the possibility of augmenting antitumor T-cell activity in two different ways. They successfully demonstrated a tolerable dose and safety profile of ipilimumab in combination with GVAX for patients with metastatic castration-resistant prostate cancer. However, further studies of such immunotherapy combinations and detailed analysis of their immunological effects are needed to observe clinical benefit.

19.
Nat Rev Urol ; 9(7): 376-85, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22641164

RESUMO

Prostate cancer remains a significant health problem for men in the Western world. Although treatment modalities are available, these do not confer long-term benefit and are accompanied by deleterious side effects. Immunotherapy represents a valuable alternative to conventional treatments by inducing tumour-specific immune responses that control the growth of cancer cells. Sipuleucel-T is approved by the FDA as an immunotherapeutic agent for the treatment of patients with asymptomatic or minimally symptomatic castration-resistant prostate cancer (CRPC). Although this approval has raised cost-versus-benefit issues, it has provided proof of concept for the therapeutic potential of active immunotherapy approaches for metastatic CRPC. Numerous clinical studies have demonstrated clinical benefit using immunotherapy compared to traditional chemotherapy and several active immunotherapy approaches (at various developmental stages)have demonstrated the potential to change the face of prostate cancer treatment.


Assuntos
Imunoterapia/tendências , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Animais , Ensaios Clínicos como Assunto/tendências , Humanos , Imunoterapia/métodos , Masculino , Resultado do Tratamento
20.
Immunotherapy ; 3(6): 735-46, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21668311

RESUMO

AIMS: We have previously shown that immunization with an adenovirus vector carrying an individual antigen induces antigen-specific CD8 T cells actively engaged in the destruction of tumor cells expressing the cognate antigen. In order to expand the range of antitumor responses beyond an individual antigen, we designed a recombinant adenovirus type 5 (rAd5) carrying a fusion construct of two full-length antigens. We used this adenovirus vector to test the concept that multiantigenic effector T cells could be generated simultaneously following a single immunization. METHOD: To perform the rAd5 constructs, we selected a combination of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA) genes based on their restricted distribution within the prostate tissue and their association with the development and progression of prostate cancer. RESULTS: Immunization of mice with rAd5 vector carrying a fusion construct of PSA and PSCA (Ad5-PSA/PSCA) simultaneously induced the expansion of anti-PSA and anti-PSCA CD8 T cells, as measured by intracellular cytokine staining for IFN-γ. The antigen-specific T-cell responses that developed were efficient in eliminating the target cells expressing cognate antigens measured by an in vivo cytotoxic T-cell assay. The in vivo tumor growth study showed that immunization of mice with Ad5-PSA/PSCA vaccine induced strong antitumor immunity when challenged with mouse prostate tumor cell lines (RM11) expressing human PSA (RM11/PSA). To further analyze the impact on therapeutic efficacy of Ad5-PSA/PSCA vaccine against the tumor cells expressing PSA and PSCA (RM11-PSA/PSCA) antigens, we injected mice with Ad5-PSA/PSCA vaccine. The vaccine inhibited the growth of established tumors with 80% of the mice becoming tumor free. These data provide useful information that antigen-specific effector T cells can be generated simultaneously and that their additive antitumor effect has the potential to eliminate the growth of established tumors. Therefore, the immunotherapy approach of using the simultaneous targeting of dual antigens associated with prostate cancer may have important implications for human clinical trials.


Assuntos
Antígenos de Neoplasias/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Imunoterapia Ativa/métodos , Neoplasias da Próstata/prevenção & controle , Neoplasias da Próstata/terapia , Vacinas de DNA/uso terapêutico , Adenoviridae/genética , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Testes Imunológicos de Citotoxicidade , Células Dendríticas/imunologia , Células Dendríticas/transplante , Epitopos de Linfócito T/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Ovalbumina/genética , Ovalbumina/imunologia , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Baço/citologia , Baço/imunologia , Linfócitos T Citotóxicos/imunologia , Transfecção , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA