Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharm Nanotechnol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38756071

RESUMO

BACKGROUND: Worldwide, cancer is the second most common cause of death. Chemotherapy and other traditional cancer treatments have toxicities that affect normal cells in addition to their intended targets, necessitating the development of novel approaches to enhance cell-specific targeting. METHODS: The present work summarizes the scientific information on nanoparticles in cancer theranostics to provide a comprehensive insight into the preventive and therapeutic potential of nanoparticles in cancer. Scopus, PubMed, Science Direct, and Google Scholar databases are searched to collect all the recent (2015-2023) scientific information on smart multifunctional nanoparticles using the terms nanotechnology, cancer theranostics, and polymer. RESULTS: The use of nanomaterials as chemical biology tools in cancer theranostics has been thoroughly investigated. They demonstrate expanded uses in terms of stability, biocompatibility, and enhanced cell permeability, enabling precision targeting and ameliorating the drawbacks of conventional cancer treatments. The nano platform presents a fascinating chance to acquire multifunctionality and targeting techniques. The production of smart nanomaterials, specifically with regard to the advent of nanotechnology, has revolutionized the diagnosis and treatment of cancer. The capability of nanoparticles to functionalize with a variety of biosubstrates, including aptamers, antibodies, DNA, and RNA, and their broad surface area allow them to encapsulate a huge number of molecules, contributing to their theranostic effect. Comparatively speaking, economical, easily produced, and less toxic nanomaterials formed from biological sources are thought to have benefits over those made using conventional processes. CONCLUSION: The present study highlights the uses of several nanoparticles (NPs), and describes numerous cancer theranostics methodologies. The benefits and difficulties preventing their adoption in cancer treatment and diagnostic applications are also critically reviewed. The use of smart nanomaterials, according to this review's findings, can considerably advance cancer theranostics and open up new avenues for tumor detection and treatment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38446215

RESUMO

Cancer, a widespread challenge to global health, remains a puzzle of intricate molecular dynamics. This review article delves into the mystery of cancer, with a keen focus on understanding the contributory role of thymidylate synthase (TS) in cancer. TS, a vital enzyme in DNA synthesis and repair, emerges as a significant player in the narrative of cancer development. The conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is a major step in producing DNA. Numerous malignancies, including those of the breast, colon, lung, and ovary, have been linked to dysregulation of TS activity. Overexpression or mutations of TS lead to uncontrolled cell proliferation and tumorigenesis molecular interactions and signalling pathways involving TS come under scrutiny, revealing the nuanced connections that propel its involvement in cancer progression. Beyond overexpression and mutations, there emerges a subtle layer of regulation that involves microRNAs (miRNAs). These tiny particles attach to the TS messenger RNA, causing translational repression or its degradation, which in turn affects TS activity. Moving towards the therapeutic realm, thymidylate synthase inhibition acts as a promising anti-cancer strategy. Targeting TS with small-molecule inhibitors could provide a novel approach to treat various cancers. By reducing the number of available nucleotides, TS inhibition would slow down or halt cancer cell division, thus depriving the tumor of the building blocks required for its proliferation and growth. The aim is to assess the viability and effectiveness of targeting TS to halt or slow down cancer progression. There is growing evidence that, in comparison to traditional TS inhibitors, few novel antifolate TS inhibitors are effective against a wider variety of neoplasms, such as lung carcinomas. It has been discovered that TS inhibitors increase cancer tissues' sensitivity to chemotherapy and radiation, increasing their vulnerability to these treatments. This article aims to provide a comprehensive insight into TS, examining its cellular details, detailing the heterocyclic moieties and molecular foundations, and providing a promising future outlook.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38482614

RESUMO

Globally, one of the leading causes of cancer-related deaths is colon cancer. As this form of cancer has a tremendous potential to metastasize, effective treatment is complicated and sometimes impossible. Despite the improvement of conventional chemotherapy and the advent of targeted therapies, overcoming multi-drug resistance (MDR) and side effects remain significant challenges. As a therapeutic intervention for targeted gene silencing in cancer, RNA technology shows promise and certain RNA-based formulations are currently undergoing clinical studies. Various studies have reported that RNA-based nanoparticles have demonstrated substantial promise for targeted medication delivery, gene therapy, and other biomedical applications. However, using RNA as a therapeutic tool presents severe limitations, mainly related to its low stability and poor cellular uptake. Nanotechnology offers a flexible and tailored alternative due to the difficulties in delivering naked RNA molecules safely in vivo, such as their short half-lives, low chemical stability, and susceptibility to nuclease degradation. In addition to shielding RNA molecules from immune system attacks and enzymatic breakdown, the nanoparticle-based delivery systems allow RNA accumulation at the tumor site. The potential of RNA and RNA-associated nanomedicines for the treatment of colon cancer, as well as the prospects for overcoming any difficulties related to mRNA, are reviewed in this study, along with the current progress of mRNA therapeutics and advancements in designing nanomaterials and delivery strategies.

4.
Med Oncol ; 41(4): 84, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438564

RESUMO

In developing new cancer medications, attention has been focused on novel epigenetic medicines called histone deacetylase (HDAC) inhibitors. Our understanding of cancer behavior is being advanced by research on epigenetics, which also supplies new targets for improving the effectiveness of cancer therapy. Most recently published patents emphasize HDAC selective drugs and multitarget HDAC inhibitors. Though significant progress has been made in emerging HDAC selective antagonists, it is urgently necessary to find new HDAC blockers with novel zinc-binding analogues to avoid the undesirable pharmacological characteristics of hydroxamic acid. HDAC antagonists have lately been explored as a novel approach to treating various diseases, including cancer. The complicated terrain of HDAC inhibitor development is summarized in this article, starting with a discussion of the many HDAC isotypes and their involvement in cancer biology, followed by a discussion of the mechanisms of action of HDAC inhibitors, their current level of development, effect of miRNA, and their combination with immunotherapeutic.


Assuntos
MicroRNAs , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , MicroRNAs/genética , Terapia de Alvo Molecular , Epigênese Genética , Histona Desacetilases , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
Curr Drug Res Rev ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303536

RESUMO

Chalcone derivatives continue to captivate medicinal chemists due to their modest chemistry, facile synthetic method, and promising biological activities. They have become wellknown in the therapeutic and pharmaceutical industries due to their diverse biological actions. These complexes offer different features and applications in a human biological system due to the flexibility of the reactions, including antimicrobial, antineoplastic, antimalarial, and other uses. As a result, chalcones have sparked much attention in malignancy research. Cancer is characterized by uncontrollably growing and spreading abnormal cells and aberrant cell behavior. These masses destroy surrounding normal tissue and can attack vital organs, leading to widespread disease. Cancer is frequently used as a warning sign for impending patient death. In the age of pharmaceutical chemistry, it is unavoidably a cause for concern and a growing weight on the populace. The pathophysiology of all malignancies is due to faulty genes that regulate the development, division, and death of cells. Various genetic and environmental variables combine to cause mutations in genes encoding essential cell-regulatory proteins, leading to the numerous alterations that characterize the evolution of cancers. Rather than directly targeting DNA synthesis, the new generation of anticancer medications target signals that promote or control the cell cycle, growth factors and their receptors, signal transduction pathways, and pathways impacting DNA repair and death. Drug hunters are focusing their attention on chalcone derivatives with varying chemical structures since they are essential in the search for anticancer drugs. Chalcone's anticancer action may be attributed to molecular changes such as drug efflux protein activities, activation of apoptosis, DNA and mitochondrial damage, inhibition of angiogenesis, tubulin inhibition, and kinase inhibition. Chalcones are used to diagnose cancer as well. The development of chalcone congeners as a prodrug or prime chemical to combat cancer necessitates a thorough investigation. This review gives an update on the different pharmacological activities of natural and synthesized chalcones in recent years. Furthermore, the structure- activity connections and processes are extensively documented, providing essential design and synthesis assistance in the future.

6.
Curr Mol Pharmacol ; 17: e18761429273223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389419

RESUMO

Mitosis of somatic cells produces a daughter cell. Apoptosis, a naturally programmed cellular death mechanism, kills abnormal cells produced by mitosis. Cancer can develop when this equilibrium is disrupted, either by an upsurge in cell propagation or a reduction in tissue demise. Cancer therapy aims to cause cancer cells to die while inflicting little harm to healthy cells. This review of apoptotic mechanism processes improves our understanding of how certain malignancies begin and develop. The current cancer treatments can operate either by inducing apoptosis or causing direct cell damage. An insight into the resistance to apoptosis may explicate why malignancy treatments fail in some situations. New therapies grounded on our understanding of apoptotic processes are being developed to induce apoptosis of cancer cells while limiting the simultaneous death of normal cells. Various biological activities require redox equilibrium to function properly. Antineoplastic medications that cause oxidative stress by raising ROS and blocking antioxidant mechanisms have recently attracted much interest. The rapid accumulation of ROS impairs redox balance and damages cancer cells severely. Here, we discuss ROS-instigating malignancy therapy and the antineoplastic mechanism used by prooxidative drugs.


Assuntos
Antineoplásicos , Apoptose , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Morte Celular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
7.
Pharm Nanotechnol ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38258763

RESUMO

Innovative colloidal preparations that can alter the pharmacological properties of drugs have been made possible by the advancement of nanotechnology. Recent advances in the sciences of the nanoscale have led to the creation of new methods for treating illnesses. Developments in nanotechnology may lessen the side effects of medicine by using effective and regulated drug delivery methods. A promising drug delivery vehicle is spanlastics, an elastic nanovesicle that can transport a variety of drug compounds. Spanlastics have expanded the growing interest in many types of administrative pathways. Using this special type of vesicular carriers, medications intended for topical, nasal, ocular, and trans-ungual treatments are delivered to specific areas. Their elastic and malleable structure allows them to fit into skin pores, making them ideal for transdermal distribution. Spanlastic is composed of non-ionic surfactants or combinations of surfactants. Numerous studies have demonstrated how spanlastics significantly improve, drug bioavailability, therapeutic effectiveness, and reduce medication toxicity. The several vesicular systems, composition and structure of spanlastics, benefits of spanlastics over alternative drug delivery methods, and the process of drug penetration via skin are all summarized in this paper. Additionally, it provides an overview of the many medications that may be treated using spanlastic vesicles. The primary benefits of these formulations were associated with their surface properties, as a variety of proteins might be linked to the look. For instance, procedure assessment and gold nanoparticles were employed as biomarkers for different biomolecules, which included tumor label detection. Anticipate further advancements in the customization and combining of spanlastic vesicles with appropriate zeta potential to transport therapeutic compounds to specific areas for enhanced disease treatment.

8.
Curr Pharm Des ; 29(41): 3282-3294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38038008

RESUMO

Cancer is one of life's most difficult difficulties and a severe health risk everywhere. Except for haematological malignancies, it is characterized by unchecked cell growth and a lack of cell death, which results in an aberrant tissue mass or tumour. Vascularization promotes tumor growth, which eventually aids metastasis and migration to other parts of the body, ultimately resulting in death. The genetic material of the cells is harmed or mutated by environmental or inherited influences, which results in cancer. Presently, anti-neoplastic medications (chemotherapy, hormone, and biological therapies) are the treatment of choice for metastatic cancers, whilst surgery and radiotherapy are the mainstays for local and non-metastatic tumors. Regrettably, chemotherapy disturbs healthy cells with rapid proliferation, such as those in the gastrointestinal tract and hair follicles, leading to the typical side effects of chemotherapy. Finding new, efficient, targeted therapies based on modifications in the molecular biology of tumor cells is essential because current chemotherapeutic medications are harmful and can cause the development of multidrug resistance. These new targeted therapies, which are gaining popularity as demonstrated by the FDA-approved targeted cancer drugs in recent years, enter molecules directly into tumor cells, diminishing the adverse reactions. A form of cancer treatment known as targeted therapy goes after the proteins that regulate how cancer cells proliferate, divide, and disseminate. Most patients with specific cancers, such as chronic myelogenous leukemia (commonly known as CML), will have a target for a particular medicine, allowing them to be treated with that drug. Nonetheless, the tumor must typically be examined to determine whether it includes drug targets.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neovascularização Patológica/tratamento farmacológico
9.
Artigo em Inglês | MEDLINE | ID: mdl-37982888

RESUMO

In an uncontrolled inflammatory environment, the complex process of lung carcinogenesis occurs. Lung cancer remains the leading cause of cancer-related mortality worldwide. The average 5-year survival rate is still low despite significant advancements in our knowledge of lung carcinogenesis and the development of innovative therapies in recent decades. Research on adjuvant treatment, lung carcinogenesis pathways, and possible prognostic indicators has to be refocused using an innovative approach. The majority of lung cancers are discovered at an advanced stage when there is little chance of recovery. It has grown in popularity in recent years to supplement already available chemotherapeutic therapies with adjuvant herbal medications, which may lessen toxicity and adverse effects without sacrificing therapeutic efficiency. One such prospective contender is curcumin. In-depth research has been done on curcumin as a multi-target anti-tumor and anti-inflammatory molecule. A pharmacologically active polyphenol produced from turmeric is called curcumin. Over the past few decades, curcumin's therapeutic potential has been thoroughly studied, and data indicate that curcumin may play a part in a variety of biological processes, most notably its potent anticancer activity. Being a pleiotropic chemical, curcumin regulates a variety of molecules that are key players in many cell signaling pathways. It has been shown to stifle transformation, restrain proliferation, and trigger apoptosis. Curcumin can reduce the development of non-small cell LC by downregulating Circular RNA hsa_circ_0007580, which in turn controls the expression of integrin subunit beta 1 by adsorbing miR-384. Nevertheless, despite all these advantages, curcumin's effectiveness is still restricted because of its weak bioavailability, poor absorption within the systemic circulation, and quick removal from the body. In an effort to overcome these constraints, scientists from all around the world are working to develop a synthetic and improved curcuminoid by appropriately altering the parent skeleton structurally. These curcuminoids will simultaneously improve the physicochemical properties and efficacy. This review presents evidence from the most recent clinical trials coupled with the molecular mechanisms of curcumin in LC. Curcumin as inhibitor of multiple signaling pathways expressed in lung cancer.

10.
Med Chem ; 19(10): 960-985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424341

RESUMO

In the recent era, developments in the field of bio-inorganic chemistry have improved interest in Schiff base complexes (imine scaffolds) for their pharmacological excellence in different areas. Schiff bases are a kind of synthetic molecule that is synthesized by the condensation reaction between a 1o amine and a carbonyl compound. Imine derivatives are also acknowledged for their ability to form complexes with several metals. Due to their wide range of biological activities, they have acquired prominence in the therapeutic and pharmaceutical industries. Inorganic chemists have continued to be intrigued by the vast range of uses of these molecules. Many of them are also thermally stable and have structural flexibility. Some of these chemicals have been discovered to be beneficial as clinical diagnostic agents as well as chemotherapeutic agents. Because of the flexibility of the reactions, these complexes have a wide range of characteristics and applications in biological systems. Anti-neoplastic activity is one of them. This review attempts to draw attention to the most notable examples of these novel compounds, which have excellent anticancer activity against different cancers. The synthetic scheme of these scaffolds, their metal complexes, and the explanation of their anticancer mechanism reported in this paper lead the researchers to design and synthesize more target-specific Schiff base congeners with little or no side effects in the future.

11.
Mol Neurobiol ; 60(10): 5987-6000, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391647

RESUMO

All biological tissues and bodily fluids include the autacoid adenosine. The P1 class of purinergic receptors includes adenosine receptors. Four distinct G-protein-coupled receptors on the cellular membrane mediate the effects of adenosine, whose cytoplasmic content is regulated by producing/degrading enzymes and nucleoside transporters. A2A receptor has received a great deal of attention in recent years because it has a wide range of potential therapeutic uses. A2B and, more significantly, A2A receptors regulate numerous physiological mechanisms in the central nervous system (CNS). The inferior targetability of A2B receptors towards adenosine points that they might portray a promising medicinal target since they are triggered only under pharmacological circumstances (when adenosine levels rise up to micromolar concentrations). The accessibility of specific ligands for A2B receptors would permit the exploration of such a theory. A2A receptors mediate both potentially neurotoxic and neuroprotective actions. Hence, it is debatable to what extent they play a role in neurodegenerative illnesses. However, A2A receptor blockers have demonstrated clear antiparkinsonian consequences, and a significant attraction exists in the role of A2A receptors in other neurodegenerative disorders. Amyloid peptide extracellular accumulation and tau hyperphosphorylation are the pathogenic components of AD that lead to neuronal cell death, cognitive impairment, and memory loss. Interestingly, in vitro and in vivo research has shown that A2A adenosine receptor antagonists may block each of these clinical symptoms, offering a crucial new approach to combat a condition for which, regrettably, only symptomatic medications are currently available. At least two requirements must be met to determine whether such receptors are a target for diseases of the CNS: a complete understanding of the mechanisms governing A2A-dependent processes and the availability of ligands that can distinguish between the various receptor populations. This review concisely summarises the biological effects mediated by A2A adenosine receptors in neurodegenerative disorders and discusses the chemical characteristics of A2A adenosine receptor antagonists undergoing clinical trials. Selective A2A receptor blocker against neurodegenerative disorders.


Assuntos
Adenosina , Doenças Neurodegenerativas , Humanos , Adenosina/farmacologia , Receptor A2A de Adenosina/metabolismo , Ligantes , Doenças Neurodegenerativas/tratamento farmacológico , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Receptores Purinérgicos P1
12.
Anticancer Agents Med Chem ; 23(4): 383-403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35708082

RESUMO

Cyclin Dependent Kinase 9 (CDK9), which controls transcriptional elongation, is a promising pharmacological target for a variety of cancerous cells, specifically those characterized by transcriptional dysregulation. CDK9 promotes the pause or release of RNA polymerase II, a rate-limiting stage in normal transcriptional regulation that is often disturbed in cancers. New indications suggest that selective CDK9 antagonism may be beneficial in the treatment of some cancers. CDK9 modulators (inhibitors and degraders) have gained a lot of attention recently, and many molecules are currently in clinical trials. In this review, the CDK9 antagonists under clinical and preclinical trials have been discussed, as well as the structure-activity relationship has been studied, which will help scientists generate more target- specific drug molecules in the future with less toxicity.


Assuntos
Quinase 9 Dependente de Ciclina , Neoplasias , Humanos , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Neoplasias/tratamento farmacológico
13.
Med Chem ; 18(10): 1044-1059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35240964

RESUMO

BACKGROUND: Pyrazole is a bioactive heterocyclic congener with numerous biological and pharmacological functionalities. Due to their multiple prospective applications, developing innovative and novel pyrazoles and analogs, revealing revolutionary methods for synthesizing this nucleus, investigating diverse potencies of that heterocycle, and exploring possible pyrazole applications are becoming increasingly relevant. OBJECTIVES: Pyrazole scaffolds have been proven successful as antimicrobial, anticancer, and antimalarial therapeutics against multiple targets like DNA gyrase, topoisomerase IV, Hsp90, and several kinase enzymes. For this variability in the biotic zone, their moiety has gained the attention of many scientists interested in researching chemical and pharmacological profiles. RESULTS: The review covers pyrazole scaffolds with a variety of biological functions and attempts to connect the structure-activity relationship. Multiple pyrazole analogs have been produced as lead compounds, and their activities have been evaluated. CONCLUSION: The combination of pyrazole with other pharmacophores in a molecule might lead to novel potent therapeutic medicines, which could aid in the development of potent lead compounds.


Assuntos
Anti-Infecciosos , Antimaláricos , Antineoplásicos , Antibacterianos , Pirazóis , Relação Estrutura-Atividade
14.
Curr Cancer Drug Targets ; 22(3): 221-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35232350

RESUMO

Cancer is a leading cause of death worldwide. The Janus kinase (JAK) signal transducer and activator of transcription (STAT) signalling pathway are activated abnormally, which promotes carcinogenesis. Several cytokines are important cancer drivers. These proteins bind to receptors and use the Janus kinase (JAK) and STAT pathways to communicate their responses. Cancer risks are linked to genetic differences in the JAK-STAT system. JAK inhibitors have been shown to reduce STAT initiation, tissue propagation, and cell existence in preclinical investigations involving solid tumour cell line models. JAK inhibitors, notably ruxolitinib, JAK1 or 2 blockers, make cell lines and mouse models more susceptible to radiotherapy, biological response modifier therapy, and oncolytic viral treatment. Numerous JAK antagonists have been or are now being evaluated in cancerous patients as monotherapy or by combining with other drugs in clinical studies. In preclinical investigations, certain JAK inhibitors showed promising anticancer effects; however, clinical trials explicitly evaluating their effectiveness against the JAK/STAT system in solid tumours have yet to be completed. JAK inhibition is a promising strategy to target the JAK/STAT system in solid tumours, and it deserves to be tested further in clinical studies. The function of directing Janus kinases (JAKs), an upstream accelerator of STATs, as a technique for lowering STAT activity in various malignant circumstances is summarized in this article, which will help scientists to generate more specific drug molecules in the future.


Assuntos
Inibidores de Janus Quinases , Neoplasias , Animais , Humanos , Janus Quinase 2/metabolismo , Janus Quinase 2/farmacologia , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases , Camundongos , Neoplasias/tratamento farmacológico , Fatores de Transcrição STAT , Transdução de Sinais
15.
Anticancer Agents Med Chem ; 22(8): 1478-1495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34382529

RESUMO

Cancer is considered one of the gruelling challenges and poses a grave health hazard across the globe. According to the International Agency for Research on Cancer (IARC), new cancer cases increased to 18.1 million in 2018, with 9.6 million deaths, bringing the global cancer rate to 23.6 million by 2030. In 1942, the discovery of nitrogen mustard as an alkylating agent was a tremendous breakthrough in cancer chemotherapy. It acts by binding to the DNA, and creating cross linkages between the two strands, leading to halt of DNA replication and eventual cell death. Nitrogen lone pairs of 'nitrogen mustard' produce an intermediate 'aziridinium ion' at the molecular level, which is very reactive towards DNA of tumour cells, resulting in multiple side effects with therapeutic consequences. Owing to its high reactivity and peripheral cytotoxicity, several improvements have been made with structural modifications for the past 75 years to enhance its efficacy and improve the direct transport of drugs to the tumour cells. Alkylating agents were among the first non-hormonal substances proven to be active against malignant cells and also the most valuable cytotoxic therapies available for the treatment of leukaemia and lymphoma patients. This review focus on the versatile use of alkylating agents and the Structure Activity Relationship (SAR) of each class of these compounds. This could provide an understanding for design and synthesis of new alkylating agents having enhanced target specificity and adequate bioavailability.


Assuntos
Antineoplásicos , Leucemia , Neoplasias , Alquilantes/química , Alquilantes/farmacologia , Alquilantes/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , DNA/química , Humanos , Leucemia/tratamento farmacológico , Mecloretamina/farmacologia , Mecloretamina/uso terapêutico , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA