Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 27(51): 13040-13051, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216419

RESUMO

Galectins are widely expressed galactose-binding lectins implied, for example, in immune regulation, metastatic spreading, and pathogen recognition. N-Acetyllactosamine (Galß1-4GlcNAc, LacNAc) and its oligomeric or glycosylated forms are natural ligands of galectins. To probe substrate specificity and binding mode of galectins, we synthesized a complete series of six mono-deoxyfluorinated analogues of LacNAc, in which each hydroxyl has been selectively replaced by fluorine while the anomeric position has been protected as methyl ß-glycoside. Initial evaluation of their binding to human galectin-1 and -3 by ELISA and 19 F NMR T2 -filter revealed that deoxyfluorination at C3, C4' and C6' completely abolished binding to galectin-1 but very weak binding to galectin-3 was still detectable. Moreover, deoxyfluorination of C2' caused an approximately 8-fold increase in the binding affinity towards galectin-1, whereas binding to galectin-3 was essentially not affected. Lipophilicity measurement revealed that deoxyfluorination at the Gal moiety affects log P very differently compared to deoxyfluorination at the GlcNAc moiety.


Assuntos
Amino Açúcares , Galectinas , Carboidratos , Humanos , Espectroscopia de Ressonância Magnética
2.
Org Biomol Chem ; 19(20): 4497-4506, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33949602

RESUMO

Fully acetylated deoxyfluorinated hexosamine analogues and non-fluorinated 3,4,6-tri-O-acylated N-acetyl-hexosamine hemiacetals have previously been shown to display moderate anti-proliferative activity. We prepared a set of deoxyfluorinated GlcNAc and GalNAc hemiacetals that comprised both features: O-acylation at the non-anomeric positions with an acetyl, propionyl and butanoyl group, and deoxyfluorination at selected positions. Determination of the in vitro cytotoxicity towards the MDA-MB-231 breast cancer and HEK-293 cell lines showed that deoxyfluorination enhanced cytotoxicity in most analogues. Increasing the ester alkyl chain length had a variable effect on the cytotoxicity of fluoro analogues, which contrasted with non-fluorinated hemiacetals where butanoyl derivatives had always higher cytotoxicity than acetates. Reaction with 2-phenylethanethiol indicated that the recently described S-glyco-modification is an unlikely cause of cytotoxicity.


Assuntos
Galactosamina
3.
J Org Chem ; 86(7): 5073-5090, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33705133

RESUMO

The Tn antigen (GalNAcα1-Thr/Ser) is abundantly expressed in many tumors but rarely found in healthy tissues, which makes it an attractive epitope for antitumor immunotherapy. The use of the Tn antigen in the development of therapeutic antitumor vaccines is hampered by its low immunogenicity, which may be enhanced by deoxyfluorination of the GalNAc moiety. Here, we report the synthesis of protected 3- and 4-fluoro analogues of the threonine-containing Tn antigen. As the stereoselective synthesis of α-linked fluorinated GalNAc is difficult, we prepared a panel of C3 and C4 deoxyfluorinated galactosazide thiodonors and evaluated their stereoselectivity in the glycosylation of carbohydrate acceptors and threonine derivatives. Glycosylation of threonine derivatives with O-benzylated C4 fluoro donors gave only modest but usable α-selectivity of α/ß = 2.5-3/1. The use of acyl and silyl protection at the 3- and 6-positions of the C4 fluoro donors did not enhance the selectivity. Installing a 4,6-di-tert-butylsilylene-protecting group in C3 fluoro donors resulted in exclusive α-selectivity and reaffirmed the strong α-directing effect of this protective group in glycosylation with galacto-configured glycosyl donors.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Treonina , Epitopos , Glicosilação
4.
Eur J Pharmacol ; 867: 172825, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31770527

RESUMO

Chemotherapy plays an essential role in the management of cancer worldwide. However, it is a non-specific treatment limited by major drawbacks, thus identification and testing of new promising molecular structures representing potential drug candidates are urgently needed. In this work, ferrocene complexes as potential antitumor drugs that display cytotoxicity in low micromolar concentrations against ovarian cancer cells A2780 and SK-OV-3 were investigated to identify their mode of action. Their mechanism of cellular accumulation was studied using differential pulse voltammetry and inductively coupled plasma - mass spectrometry. Their mode of cell death induction was determined by changes in the mitochondrial membrane potential, production of reactive oxygen species and by Annexin V staining. Transferrin receptors were identified as key mediators of intracellular accumulation of ferrocenes and the extent of cellular uptake reflected the anticancer activity of individual compounds. Functional analysis revealed activation of intrinsic apoptosis as a dominant mechanism leading to regulated cell death induced in ovarian cancer cells by ferrocenes. Ferrocenes represent a group of promising sandwich organometallic complexes exerting cytotoxic activity. We suggest their application not only as standalone chemotherapeutics but also as modifying substituents of known drugs to improve their antitumor effects.


Assuntos
Antineoplásicos/farmacologia , Compostos Ferrosos/farmacologia , Metalocenos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Compostos Ferrosos/uso terapêutico , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metalocenos/uso terapêutico , Neoplasias Ovarianas/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores da Transferrina/metabolismo
5.
Beilstein J Org Chem ; 12: 750-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340467

RESUMO

BACKGROUND: Derivatives of D-glucosamine and D-galactosamine represent an important family of the cell surface glycan components and their fluorinated analogs found use as metabolic inhibitors of complex glycan biosynthesis, or as probes for the study of protein-carbohydrate interactions. This work is focused on the synthesis of acetylated 3-deoxy-3-fluoro, 4-deoxy-4-fluoro and 3,4-dideoxy-3,4-difluoro analogs of D-glucosamine and D-galactosamine via 1,6-anhydrohexopyranose chemistry. Moreover, the cytotoxicity of the target compounds towards selected cancer cells is determined. RESULTS: Introduction of fluorine at C-3 was achieved by the reaction of 1,6-anhydro-2-azido-2-deoxy-4-O-benzyl-ß-D-glucopyranose or its 4-fluoro analog with DAST. The retention of configuration in this reaction is discussed. Fluorine at C-4 was installed by the reaction of 1,6:2,3-dianhydro-ß-D-talopyranose with DAST, or by fluoridolysis of 1,6:3,4-dianhydro-2-azido-ß-D-galactopyranose with KHF2. The amino group was introduced and masked as an azide in the synthesis. The 1-O-deacetylated 3-fluoro and 4-fluoro analogs of acetylated D-galactosamine inhibited proliferation of the human prostate cancer cell line PC-3 more than cisplatin and 5-fluorouracil (IC50 28 ± 3 µM and 54 ± 5 µM, respectively). CONCLUSION: A complete series of acetylated 3-fluoro, 4-fluoro and 3,4-difluoro analogs of D-glucosamine and D-galactosamine is now accessible by 1,6-anhydrohexopyranose chemistry. Intermediate fluorinated 1,6-anhydro-2-azido-hexopyranoses have potential as synthons in oligosaccharide assembly.

6.
Invest New Drugs ; 33(5): 1123-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26205069

RESUMO

BACKGROUND: Ovarian cancer is the seventh-most common cancer amongst women and the most deadly gynecologic cancer. Cisplatin based drugs are used in first line therapy, but resistance represents a major obstacle for successful treatment. In this study, we investigated the anticancer effects and mechanism of action of three titanocene difluorides, two bearing a pendant carbohydrate moiety (α-D-ribofuranos-5-yl) on their periphery and one without any substitution. RESULTS: The efficacy of these compounds on ovarian cancer cell lines was evaluated in relation to their particular chemical structure and compared with cisplatin as the most common treatment modality for this type of cancer. The typical mechanism of cisplatin action involves DNA damage, activation of p53 protein and induction of cell death, as previously described for titanium ions. Nevertheless, our data indicate that the effect of titanocene difluoride derivatives is mediated via the endoplasmic reticulum stress pathway and autophagy. CONCLUSION: We anticipate that the presence of substituents on cyclopentadienyl ring(s) might play an important role in modulation of the activity of particular compounds. Titanocene difluorides exert comparable cytotoxic activity as cisplatin and are more efficient in cisplatin-resistant cell lines. Our results suggest potential utilization of these compounds especially in the treatment of cisplatin-resistant tumor cells.


Assuntos
Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Autofagia/efeitos dos fármacos , Western Blotting , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA