Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 2): 159516, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270356

RESUMO

Eleven potentially toxic metal(loid)s (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), proven source markers of mineral based coal-fired industrial emissions and vehicular exhausts, were analysed using the four steps sequential extraction method to evaluate metal(loid)s concentration, in total and fractions of bioavailable and non-bioavailable for fine (PM2.5) and coarse (PM10-2.5) particulate modes. A total of 26-day-wise samples with three replications (total number of samples = 78) were collected in January-December 2019 for each PM10 and PM2.5 at an urban-residential site in India. In both the coarse and fine particulate modes, Pb and Cr have respectively shown the highest and lowest total concentrations of the measured metal(loid)s, indicating the presence of coal-fired power plants and heavy vehicular activities near to study area. In addition, Mn has shown highest bioavailable fraction for both coarse and fine particulate modes. More than 50 % of metal(loid)s concentration, in total to a bioavailable fraction (BAF) were observed in case of As, Cd, Cr, Co, Mn, Ni, and Pb of PM2.5. Mn and Zn have shown similar behaviour in the case of coarse particulate mode. Source apportionment of metal(loid)s bioavailable fractions using positive matrix factorization (PMF 5.0) has found three significant sources: crustal and natural dust (30.04 and 39 %), road traffic (49.57 and 20 %), and industrial emission (20.39 and 41 %) for coarse and fine particulate mode, respectively. Cancer risk through the inhalation pathway was high in total concentration but lower in BAF concentration in both age groups (children and adults).


Assuntos
Poluentes Atmosféricos , Metais Pesados , Neoplasias , Criança , Adulto , Humanos , Material Particulado/análise , Monitoramento Ambiental/métodos , Disponibilidade Biológica , Cádmio/análise , Chumbo/análise , Poeira/análise , Fracionamento Químico , Carvão Mineral/análise , Índia , Medição de Risco , Metais Pesados/análise , Poluentes Atmosféricos/análise
2.
J Fluoresc ; 31(4): 951-960, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33821436

RESUMO

To utilize the nanomaterials as an effective carrier for the drug delivery applications, it is important to study the interaction between nanomaterials and drug or biomolecules. In this study GSH functionalized Mn2+-doped CdTe/ZnS QDs has been utilized as a model nanomaterial due to its high luminescence property. Folic acid (FA) gradually quenches the FL of GSH functionalized Mn2+ - doped CdTe/ZnS QDs. The Stern-Volmer quenching constant (Ksv), binding constant (Ks) and effective quenching constant (Ka) for the FA-QDs system is calculated to be 1.32 × 105 M-1, 1.92 × 105 and 0.27 × 105 M-1, respectively under optimized condition (Temp. 300 K, pH 8.0, incubation time 40 min.). The effects of temperature, pH, and incubation time on FA-QDs system have also been studied. Statistical analysis of the quenched FL intensity versus FA concentration revealed a linear range from 1 × 10-7 to 5.0 × 10-5 for FA detection. The LOD of the current nano-sensor for FA was calculated to be 0.2 µM. The effect of common interfering metal ions and other relevant biomolecules on the detection of FA (12.0 µM) have also been investigated. L-cysteine and glutathione displayed moderate effect on FA detection. Similarly, the common metal ions (Na+, K+, Ca2+ and Mg2+) produced minute interference while Zn2+ Cu2+ and Fe3+ exert moderate interference. Toxic metal ions (Hg2+ and Pb2+) produced severe interferences in FA detection.Graphical abstract GSH-Mn2+ CdTe/ZnS QDs based Fluorescence Nanosensor for Folic acid.


Assuntos
Sulfetos , Compostos de Zinco , Compostos de Cádmio , Fluorescência , Pontos Quânticos , Telúrio
3.
Anal Bioanal Chem ; 412(7): 1573-1583, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31932862

RESUMO

We report a smartphone-paper-based sensor impregnated with cetyltrimethylammonium bromide modified silver nanoparticles (AgNPs/CTAB) for determination of Fe3+ in water and blood plasma samples. The methodology for determination of Fe3+ is based on the change in signal intensity of AgNPs/CTAB fabricated on a paper substrate after the deposition of analyte, using a smartphone followed by processing with ImageJ software. The mechanism of sensing for detection and determination of Fe3+ is based on the discoloration of AgNPs which impregnated the paper substrate. The discoloration is attributed to the electron transfer reaction taking place on the surface of NPs in the presence of CTAB. Fe3+ was determined when the paper was impregnated with 1 mM AgNPs for 5 min of reaction time and the substrate was kept under acidic conditions. The linear range for determination of total iron in terms of Fe3+ was 50-900 µg L-1 with a limit of determination (LOD) of 20 µg L-1 and coefficient of variation (CV) of 3.2%. The good relative recovery of 91.3-95.0% and interference studies showed the selectivity of the method for determination of total iron in water and blood plasma samples. Smartphone-paper-based sensors have advantages of simplicity, rapidity, user-friendliness, low cost, and miniaturization of the method for on-site determination of total iron compared to methods that require sophisticated analytical instruments. Graphical abstract Smartphone-paper-based sensor with cetyltrimethylammonium bromide modified silver nanoparticles for determination of Fe3+ in water and blood plasma samples.


Assuntos
Ferro/análise , Ferro/sangue , Papel , Smartphone , Água/química , Limite de Detecção
4.
RSC Adv ; 10(41): 24190-24202, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516221

RESUMO

An enzyme immobilized glutathione (GSH)-capped CdTe quantum dot (QD)-based fluorescence assay has been developed for monitoring organophosphate pesticides. In principle, GSH-capped CdTe QDs exhibit higher sensitivity towards H2O2 produced from the active enzymatic reaction of acetylcholinesterase (AChE) and choline oxidase (CHOx), which results in the fluorescence (FL) "turn-off" of the GSH-capped CdTe QDs. A "turn-on" FL of the CdTe QDs at 520 nm was recovered in the presence of organophosphate (OP). The FL changes of the GSH-capped CdTe QD/AChE/CHOx biosensor reasonably correspond to the amount of OP pesticides. The detection limit of the CdTe/AChE/CHOx biosensor towards paraoxon, dichlorvos, malathion and triazophos was 1.62 × 10-15 M, 75.3 × 10-15 M, 0.23 × 10-9 M and 10.6 × 10-12 M, respectively. The GSH-capped CdTe QDs/AChE/CHOx biosensor was applied as a FL nanoprobe for assaying the enzymatic activity of AChE. The inhibited AChE was reactivated up to 94% using pyridine oximate (2-PyOx-), and functionalized pyridinium oximates (4-C12PyOx- and 4-C18PyOx-) of varying chain lengths. It was found that the reactivation potency of the tested oximes varied with the chain length of the oximes. This biosensing system offers the promising benefit for the determination of the OP pesticides in food, water and environmental samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA