Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 194: 85-95, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960317

RESUMO

Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.

2.
Circ Res ; 134(10): 1292-1305, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38618716

RESUMO

BACKGROUND: During myocardial ischemia/reperfusion (I/R) injury, high levels of matrix Ca2+ and reactive oxygen species (ROS) induce the opening of the mitochondrial permeability transition pore (mPTP), which causes mitochondrial dysfunction and ultimately necrotic death. However, the mechanisms of how these triggers individually or cooperatively open the pore have yet to be determined. METHODS: Here, we use a combination of isolated mitochondrial assays and in vivo I/R surgery in mice. We challenged isolated liver and heart mitochondria with Ca2+, ROS, and Fe2+ to induce mitochondrial swelling. Using inhibitors of the mPTP (cyclosporine A or ADP) lipid peroxidation (ferrostatin-1, MitoQ), we determined how the triggers elicit mitochondrial damage. Additionally, we used the combination of inhibitors during I/R injury in mice to determine if dual inhibition of these pathways is additivity protective. RESULTS: In the absence of Ca2+, we determined that ROS fails to trigger mPTP opening. Instead, high levels of ROS induce mitochondrial dysfunction and rupture independently of the mPTP through lipid peroxidation. As expected, Ca2+ in the absence of ROS induces mPTP-dependent mitochondrial swelling. Subtoxic levels of ROS and Ca2+ synergize to induce mPTP opening. Furthermore, this synergistic form of Ca2+- and ROS-induced mPTP opening persists in the absence of CypD (cyclophilin D), suggesting the existence of a CypD-independent mechanism for ROS sensitization of the mPTP. These ex vivo findings suggest that mitochondrial dysfunction may be achieved by multiple means during I/R injury. We determined that dual inhibition of the mPTP and lipid peroxidation is significantly more protective against I/R injury than individually targeting either pathway alone. CONCLUSIONS: In the present study, we have investigated the relationship between Ca2+ and ROS, and how they individually or synergistically induce mitochondrial swelling. Our findings suggest that Ca2+ mediates mitochondrial damage through the opening of the mPTP, although ROS mediates its damaging effects through lipid peroxidation. However, subtoxic levels both Ca2+ and ROS can induce mPTP-mediated mitochondrial damage. Targeting both of these triggers to preserve mitochondria viability unveils a highly effective therapeutic approach for mitigating I/R injury.


Assuntos
Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica , Espécies Reativas de Oxigênio , Animais , Peroxidação de Lipídeos/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Cálcio/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos
3.
Cells ; 13(2)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38247800

RESUMO

High-protein diets (HPDs) offer health benefits, such as weight management and improved metabolic profiles. The effects of HPD on cardiac arrhythmogenesis remain unclear. Atrial fibrillation (AF), the most common arrhythmia, is associated with inflammasome activation. The role of the Absent-in-Melanoma 2 (AIM2) inflammasome in AF pathogenesis remains unexplored. In this study, we discovered that HPD increased susceptibility to AF. To demonstrate the involvement of AIM2 signaling in the pathogenesis of HPD-induced AF, wildtype (WT) and Aim2-/- mice were fed normal-chow (NC) and HPD, respectively. Four weeks later, inflammasome activity was upregulated in the atria of WT-HPD mice, but not in the Aim2-/--HPD mice. The increased AF vulnerability in WT-HPD mice was associated with abnormal sarcoplasmic reticulum (SR) Ca2+-release events in atrial myocytes. HPD increased the cytoplasmic double-strand (ds) DNA level, causing AIM2 activation. Genetic inhibition of AIM2 in Aim2-/- mice reduced susceptibility to AF, cytoplasmic dsDNA level, mitochondrial ROS production, and abnormal SR Ca2+-release in atrial myocytes. These data suggest that HPD creates a substrate conducive to AF development by activating the AIM2-inflammasome, which is associated with mitochondrial oxidative stress along with proarrhythmic SR Ca2+-release. Our data imply that targeting the AIM2 inflammasome might constitute a novel anti-AF strategy in certain patient subpopulations.


Assuntos
Fibrilação Atrial , Dieta Rica em Proteínas , Animais , Camundongos , Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Citoplasma , Dieta Rica em Proteínas/efeitos adversos , Proteínas de Ligação a DNA/metabolismo , Inflamassomos
4.
Oxid Med Cell Longev ; 2021: 5391706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745418

RESUMO

Ischemia-reperfusion injury (IRI) is defined as the total combined damage that occurs during a period of ischemia and following the recovery of blood flow. Oxidative stress, mitochondrial dysfunction, and an inflammatory response are factors contributing to IRI-related damage that can each result in cell death. Irisin is a polypeptide that is proteolytically cleaved from the extracellular domain of fibronectin type III domain-containing protein 5 (FNDC5). Irisin acts as a myokine that potentially mediates beneficial effects of exercise by reducing oxidative stress, improving mitochondrial fitness, and suppressing inflammation. The existing literature also suggests a possible link between irisin and IRI, involving mechanisms similar to those associated with exercise. This article will review the pathogenesis of IRI and the potential benefits and current limitations of irisin as a therapeutic strategy for IRI, while highlighting the mechanistic correlations between irisin and IRI.


Assuntos
Fibronectinas/antagonistas & inibidores , Estresse Oxidativo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/terapia , Animais , Fibronectinas/metabolismo , Humanos , Traumatismo por Reperfusão/metabolismo
5.
Int Rev Cell Mol Biol ; 353: 153-209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32381175

RESUMO

The adult heart is a post-mitotic terminally differentiated organ; therefore, beyond development, cardiomyocyte cell death is maladaptive. Heart disease is the leading cause of death in the world and aberrant cardiomyocyte cell death is the underlying problem for most cardiovascular-related diseases and fatalities. In this chapter, we will discuss the different cell death mechanisms that engage during normal cardiac development, aging, and disease states. The most abundant loss of cardiomyocytes occurs during a myocardial infarction, when the blood supply to the heart is obstructed, and the affected myocardium succumbs to cell death. Originally, this form of cell death was considered to be unregulated; however, research from the last half a century clearly demonstrates that this form of cell death is multifaceted and employees various degrees of regulation. We will explore all of the cell death pathways that have been implicated in this disease state and the potential interplay between them. Beyond myocardial infarction, we also explore the role and mechanisms of cardiomyocyte cell death in heart failure, myocarditis, and chemotherapeutic-induced cardiotoxicity. Inhibition of cardiomyocyte cell death has extensive therapeutic potential that will increase the longevity and health of the human heart.


Assuntos
Doenças Cardiovasculares/patologia , Sistema Cardiovascular/patologia , Morte Celular , Neoplasias Cardíacas/patologia , Animais , Neoplasias Cardíacas/tratamento farmacológico , Humanos
6.
Sci Adv ; 5(8): eaaw4597, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31489369

RESUMO

The mitochondrial permeability transition pore (MPTP) has resisted molecular identification. The original model of the MPTP that proposed the adenine nucleotide translocator (ANT) as the inner membrane pore-forming component was challenged when mitochondria from Ant1/2 double null mouse liver still had MPTP activity. Because mice express three Ant genes, we reinvestigated whether the ANTs comprise the MPTP. Liver mitochondria from Ant1, Ant2, and Ant4 deficient mice were highly refractory to Ca2+-induced MPTP formation, and when also given cyclosporine A (CsA), the MPTP was completely inhibited. Moreover, liver mitochondria from mice with quadruple deletion of Ant1, Ant2, Ant4, and Ppif (cyclophilin D, target of CsA) lacked Ca2+-induced MPTP formation. Inner-membrane patch clamping in mitochondria from Ant1, Ant2, and Ant4 triple null mouse embryonic fibroblasts showed a loss of MPTP activity. Our findings suggest a model for the MPTP consisting of two distinct molecular components: The ANTs and an unknown species requiring CypD.


Assuntos
Nucleotídeos de Adenina/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria/genética , Peptidil-Prolil Isomerase F/genética , Deleção de Sequência/genética , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Poro de Transição de Permeabilidade Mitocondrial
7.
Circulation ; 138(10): 1012-1024, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29666070

RESUMO

BACKGROUND: Although c-Kit+ adult progenitor cells were initially reported to produce new cardiomyocytes in the heart, recent genetic evidence suggests that such events are exceedingly rare. However, to determine if these rare events represent true de novo cardiomyocyte formation, we deleted the necessary cardiogenic transcription factors Gata4 and Gata6 from c-Kit-expressing cardiac progenitor cells. METHODS: Kit allele-dependent lineage tracing and fusion analysis were performed in mice following simultaneous Gata4 and Gata6 cell type-specific deletion to examine rates of putative de novo cardiomyocyte formation from c-Kit+ cells. Bone marrow transplantation experiments were used to define the contribution of Kit allele-derived hematopoietic cells versus Kit lineage-dependent cells endogenous to the heart in contributing to apparent de novo lineage-traced cardiomyocytes. A Tie2CreERT2 transgene was also used to examine the global impact of Gata4 deletion on the mature cardiac endothelial cell network, which was further evaluated with select angiogenesis assays. RESULTS: Deletion of Gata4 in Kit lineage-derived endothelial cells or in total endothelial cells using the Tie2CreERT2 transgene, but not from bone morrow cells, resulted in profound endothelial cell expansion, defective endothelial cell differentiation, leukocyte infiltration into the heart, and a dramatic increase in Kit allele-dependent lineage-traced cardiomyocytes. However, this increase in labeled cardiomyocytes was an artefact of greater leukocyte-cardiomyocyte cellular fusion because of defective endothelial cell differentiation in the absence of Gata4. CONCLUSIONS: Past identification of presumed de novo cardiomyocyte formation in the heart from c-Kit+ cells using Kit allele lineage tracing appears to be an artefact of labeled leukocyte fusion with cardiomyocytes. Deletion of Gata4 from c-Kit+ endothelial progenitor cells or adult endothelial cells negatively impacted angiogenesis and capillary network integrity.


Assuntos
Linhagem da Célula , Proliferação de Células , Células Endoteliais/metabolismo , Fator de Transcrição GATA4/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-kit/metabolismo , Regeneração , Animais , Transplante de Medula Óssea , Fusão Celular , Rastreamento de Células/métodos , Células Cultivadas , Feminino , Fator de Transcrição GATA4/deficiência , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
8.
PLoS One ; 10(6): e0130520, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061004

RESUMO

During apoptosis the pro-death Bcl-2 family members Bax and Bak induce mitochondrial outer membrane permeabilization (MOMP) to mediate cell death. Recently, it was shown that Bax and Bak are also required for mitochondrial permeability transition pore (MPTP)-dependent necrosis, where, in their non-oligomeric state, they enhance permeability characteristics of the outer mitochondrial membrane. Necroptosis is another form of regulated necrosis involving the death receptors and receptor interacting protein kinases (RIP proteins, by Ripk genes). Here, we show cells or mice deficient for Bax/Bak or cyclophilin D, a protein that regulates MPTP opening, are resistant to cell death induced by necroptotic mediators. We show that Bax/Bak oligomerization is required for necroptotic cell death and that this oligomerization reinforces MPTP opening. Mechanistically, we observe mixed lineage kinase domain-like (MLKL) protein and cofilin-1 translocation to the mitochondria following necroptosis induction, while expression of the mitochondrial matrix isoform of the antiapoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), is significantly reduced. Some of these effects are lost with necroptosis inhibition in Bax/Bak1 double null, Ppif-/-, or Ripk3-/- fibroblasts. Hence, downstream mechanisms of cell death induced by necroptotic stimuli utilize both Bax/Bak to generate apoptotic pores in the outer mitochondrial membrane as well as MPTP opening in association with known mitochondrial death modifying proteins.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
9.
Circ Res ; 116(11): 1800-9, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25999420

RESUMO

Although the molecular effectors of apoptotic cell death have been largely annotated over the past 30 years, leading to a strong biological understanding of this process and its importance in cell biology, cell death through necrosis has only recently been accepted as a similarly regulated process with definable molecular effectors. The mitochondria are important and central mediators of both apoptosis and regulated necrosis. In apoptosis, the B-cell leukemia/lymphoma 2 (Bcl-2) family members Bcl-2-associated protein x (Bax) and Bcl-2 homologues antagonist/killer (Bak) undergo oligomerization in the outer mitochondrial membrane resulting in the release of apoptosis inducing substrates and the activation of caspases and nucleases. In contrast, during necrosis the mitochondria become dysfunctional and maladaptive in conjunction with reactive oxygen species production and the loss of ATP production, in part through opening of the mitochondrial permeability transition pore. Although regulated necrosis is caspase-independent, recent evidence has shown that it still requires the apoptotic regulators Bax/Bak, which can regulate the permeability characteristics of the outer mitochondrial membrane in their nonoligomerized state. Here, we review the nonapoptotic side of Bcl-2 family, specifically the role of Bax/Bak in regulated necrotic cell death. We will also discuss how these Bcl-2 family member effectors could be part of a larger integrated network that ultimately decides the fate of a given cell somewhere within a molecular continuum between apoptosis and regulated necrosis.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Necrose , Espécies Reativas de Oxigênio/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Modelos Biológicos
11.
Nature ; 509(7500): 337-41, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24805242

RESUMO

If and how the heart regenerates after an injury event is highly debated. c-kit-expressing cardiac progenitor cells have been reported as the primary source for generation of new myocardium after injury. Here we generated two genetic approaches in mice to examine whether endogenous c-kit(+) cells contribute differentiated cardiomyocytes to the heart during development, with ageing or after injury in adulthood. A complementary DNA encoding either Cre recombinase or a tamoxifen-inducible MerCreMer chimaeric protein was targeted to the Kit locus in mice and then bred with reporter lines to permanently mark cell lineage. Endogenous c-kit(+) cells did produce new cardiomyocytes within the heart, although at a percentage of approximately 0.03 or less, and if a preponderance towards cellular fusion is considered, the percentage falls to below approximately 0.008. By contrast, c-kit(+) cells amply generated cardiac endothelial cells. Thus, endogenous c-kit(+) cells can generate cardiomyocytes within the heart, although probably at a functionally insignificant level.


Assuntos
Linhagem da Célula , Traumatismos Cardíacos/patologia , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Envelhecimento/fisiologia , Animais , Diferenciação Celular , Fusão Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Coração/crescimento & desenvolvimento , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Regeneração/fisiologia , Tamoxifeno/farmacologia
12.
J Biol Chem ; 286(10): 8117-8127, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21212260

RESUMO

D-type cyclins regulate cellular outcomes in part through cyclin-dependent, kinase-independent mechanisms that modify transcription factor action, and recent in vivo studies showed that cyclin D1 associates with a large number of transcriptional regulators in cells of the retina and breast. Given the frequency of cyclin D1 alterations in cancer, it is imperative to delineate the molecular mechanisms by which cyclin D1 controls key transcription factor networks in human disease. Prostate cancer was used as a paradigm because this tumor type is reliant at all stages of the disease on androgen receptor (AR) signaling, and cyclin D1 has been shown to negatively modulate AR-dependent expression of prostate-specific antigen (KLK3/PSA). Strategies were employed to control cyclin D1 expression under conditions of hormone depletion, and the effect of cyclin D1 on subsequent androgen-dependent gene expression was determined using unbiased gene expression profiling. Modulating cyclin D1 conferred widespread effects on androgen signaling and revealed cyclin D1 to be a selective effector of hormone action. A subset of androgen-induced target genes, known to be directly regulated by AR, was strongly suppressed by cyclin D1. Analyses of AR occupancy at target gene regulatory loci of clinical relevance demonstrated that cyclin D1 limits AR residence after hormone stimulation. Together, these findings reveal a new function for cyclin D1 in controlling hormone-dependent transcriptional outcomes and demonstrate a pervasive role for cyclin D1 in regulating transcription factor dynamics.


Assuntos
Androgênios/metabolismo , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Ciclina D1/genética , Loci Gênicos/genética , Humanos , Calicreínas/biossíntese , Calicreínas/genética , Masculino , Antígeno Prostático Específico/biossíntese , Antígeno Prostático Específico/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética
13.
Clin Cancer Res ; 15(17): 5338-49, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19706803

RESUMO

PURPOSE: Alternative CCND1 splicing results in cyclin D1b, which has specialized, protumorigenic functions in prostate not shared by the cyclin D1a (full length) isoform. Here, the frequency, tumor relevance, and mechanisms controlling cyclin D1b were challenged. EXPERIMENTAL DESIGN: First, relative expression of both cyclin D1 isoforms was determined in prostate adenocarcinomas. Second, relevance of the androgen axis was determined. Third, minigenes were created to interrogate the role of the G/A870 polymorphism (within the splice site), and findings were validated in primary tissue. Fourth, the effect of G/A870 on cancer risk was assessed in two large case-control studies. RESULTS: Cyclin D1b is induced in tumors, and a significant subset expressed this isoform in the absence of detectable cyclin D1a. Accordingly, the isoforms showed noncorrelated expression patterns, and hormone status did not alter splicing. Whereas G/A870 was not independently predictive of cancer risk, A870 predisposed for transcript-b production in cells and in normal prostate. The influence of A870 on overall transcript-b levels was relieved in tumors, indicating that aberrations in tumorigenesis likely alter the influence of the polymorphism. CONCLUSIONS: These studies reveal that cyclin D1b is specifically elevated in prostate tumorigenesis. Cyclin D1b expression patterns are distinct from that observed with cyclin D1a. The A870 allele predisposes for transcript-b production in a context-specific manner. Although A870 does not independently predict cancer risk, tumor cells can bypass the influence of the polymorphism. These findings have major implications for the analyses of D-cyclin function in the prostate and provide the foundation for future studies directed at identifying potential modifiers of the G/A870 polymorphism.


Assuntos
Processamento Alternativo/genética , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Alelos , Estudos de Casos e Controles , Ciclina D1/metabolismo , Genótipo , Humanos , Masculino , Polimorfismo Genético , Neoplasias da Próstata/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA