Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125607

RESUMO

The future of therapy for neurodegenerative diseases (NDs) relies on new strategies targeting multiple pharmacological pathways. Our research led to obtaining the compound AR71 [(E)-3-(3,4,5-trimethoxyphenyl)-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)prop-2-en-1-one], which has high affinity for human H3R (Ki = 24 nM) and selectivity towards histamine H1 and H4 receptors (Ki > 2500 nM), and showed anti-inflammatory activity in a model of lipopolysaccharide-induced inflammation in BV-2 cells. The presented tests confirmed its antagonist/inverse agonist activity profile and good metabolic stability while docking studies showed the binding mode to histamine H1, H3, and H4 receptors. In in vitro tests, cytotoxicity was evaluated at three cell lines (neuroblastoma, astrocytes, and human peripheral blood mononuclear cells), and a neuroprotective effect was observed in rotenone-induced toxicity. In vivo experiments in a mouse neuropathic pain model demonstrated the highest analgesic effects of AR71 at the dose of 20 mg/kg body weight. Additionally, AR71 showed antiproliferative activity in higher concentrations. These findings suggest the need for further evaluation of AR71's therapeutic potential in treating ND and CNS cancer using animal experimental models.


Assuntos
Analgésicos , Anti-Inflamatórios , Receptores Histamínicos H3 , Animais , Humanos , Camundongos , Receptores Histamínicos H3/metabolismo , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Neuralgia/induzido quimicamente , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Lipopolissacarídeos , Linhagem Celular Tumoral
2.
ACS Chem Neurosci ; 15(6): 1206-1218, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440987

RESUMO

This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 µM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 µM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.


Assuntos
Colinesterases , Receptores Histamínicos H3 , Estrutura Molecular , Ligantes , Histamina , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Éteres , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Receptores Histamínicos , Relação Estrutura-Atividade
3.
Biomolecules ; 13(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37509114

RESUMO

Multitarget drugs based on a hybrid dopamine-xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer's and Parkinson's diseases is warranted.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Xantina/farmacologia , Xantina/uso terapêutico , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Dopamina , Ligantes , Relação Estrutura-Atividade , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Monoaminoxidase/metabolismo , Dopaminérgicos/farmacologia
4.
ACS Pharmacol Transl Sci ; 5(10): 973-984, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36268115

RESUMO

COVID-19 disease is associated with progressive accumulation of SARS-CoV-2-specific mRNA, which is recognized by innate immune receptors, such as TLR3. This in turn leads to dysregulated production of multiple cytokines, including IL-6, IFN-γ, CXCL1, and TNF-α. Excessive production of these cytokines leads to acute lung injury (ALI), which consequently compromises alveolar exchange of O2 and CO2. It is therefore of considerable interest to develop novel therapies that reduce pulmonary inflammation and stem production of pro-inflammatory cytokines, potentially for COVID-19 patients that are at high risk of developing severe disease. Purinergic signaling has a central role in fine-tuning the innate immune system, with P2 (nucleotide) receptor antagonists and adenosine receptor agonists having anti-inflammatory effects. Accordingly, we focused here on the potential role of purinergic receptors in driving neutrophilic inflammation and cytokine production in a mouse model of pulmonary inflammation. To mimic the effects of SARS-CoV-2-specific RNA accumulation in mice, we administered progressively increasing daily doses of a viral mimetic, polyinosinic:polycytidylic acid [poly(I:C)] into the airways of mice over the course of 1 week. Some mice also received increasing daily doses of ovalbumin to mimic virus-encoded protein accumulation. Animals receiving both poly(I:C) and ovalbumin displayed particularly high cytokine levels and neutrophilia, suggestive of both innate and antigen-specific, adaptive immune responses. The extent of these responses was diminished by genetic deletion (P2Y14R, P2X7R) or pharmacologic modulation (P2Y14R antagonists, A3AR agonists) of purinergic receptors. These results suggest that pharmacologic modulation of select purinergic receptors might be therapeutically useful in treating COVID-19 and other pulmonary infections.

5.
Eur J Med Chem ; 243: 114761, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36179403

RESUMO

Lymphomas are still difficult to treat even with modern therapies as, among others, multidrug resistance (MDR) is often counteracting a successful cancer therapy. P-gp/ABC-transporters are well-known for their crucial role in the main tumour MDR mechanism, eliminating drugs and cytotoxic substances from the cancer cell by efflux, and their modulators are promising for innovative therapy, but none has been approved in the pharmaceutical market yet. Herein, we have designed, synthesised and analysed 30 novel seleno- and thioether 1,3,5-triazine derivatives conducting comprehensive studies to evaluate their potential application in human JURKAT lymphoma cells. Among the new compounds, four (11, 12, 13 and 23) were much more effective than the reference inhibitor verapamil, being potent ABCB1 inhibitors already at 2 µM, while 5 and 15 showed very potent ABCB1 inhibitory activity only at 20 µM. Results of P-gp ATPase assays, supported with docking studies, indicated the competitive substrate mode of modulating action for 15, while ABCB1, ABCC1 and ABCG2 genes expression induction by 15 with q-PCR was confirmed. All compounds were evaluated for their cytotoxic and antiproliferative properties in both sensitive (PAR) and resistant (MDR) mouse T-lymphoma cell lines, and compound 15, also considering its promising ABCB1 inhibition properties, was revealed to be the best compound in terms of its cytotoxic effect (IC50: 16.73 µM) as well as concerning the antiproliferative effect (IC50: 5.35 µM) in MDR cells. Regarding the mechanistic studies looking at the cell cycle, the thioether 15 and selenium derivatives 26 and 29 were significantly effective in the regulation of cell cycle-related genes alone or in co-treatment with doxorubicin counteracting Cyclin D1 and E1 expression and increasing p53 and p21 levels, shedding first light on their mechanism of action. In summary, we explored the chemical space of seleno- and thioether 1,3,5-triazine derivatives with interesting activity against lymphoma. Especially compound 15 is worthy of being studied deeper to evaluate its precise mode of action further as well it can be improved regarding its potency and drug-likeness.


Assuntos
Antineoplásicos , Linfoma , Camundongos , Animais , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Sulfetos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linfoma/tratamento farmacológico , Preparações Farmacêuticas , Triazinas/farmacologia , Linhagem Celular Tumoral
6.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34027896

RESUMO

Obesity is the major driver of the worldwide epidemic in type 2 diabetes (T2D). In the obese state, chronically elevated plasma free fatty acid levels contribute to peripheral insulin resistance, which can ultimately lead to the development of T2D. For this reason, drugs that are able to regulate lipolytic processes in adipocytes are predicted to have considerable therapeutic potential. Gi-coupled P2Y14 receptor (P2Y14R; endogenous agonist, UDP-glucose) is abundantly expressed in both mouse and human adipocytes. Because activated Gi-type G proteins exert an antilipolytic effect, we explored the potential physiological relevance of adipocyte P2Y14Rs in regulating lipid and glucose homeostasis. Metabolic studies indicate that the lack of adipocyte P2Y14R enhanced lipolysis only in the fasting state, decreased body weight, and improved glucose tolerance and insulin sensitivity. Mechanistic studies suggested that adipocyte P2Y14R inhibits lipolysis by reducing lipolytic enzyme activity, including ATGL and HSL. In agreement with these findings, agonist treatment of control mice with a P2Y14R agonist decreased lipolysis, an effect that was sensitive to inhibition by a P2Y14R antagonist. In conclusion, we demonstrate that adipose P2Y14Rs were critical regulators of whole-body glucose and lipid homeostasis, suggesting that P2Y14R antagonists might be beneficial for the therapy of obesity and T2D.


Assuntos
Glucose/metabolismo , Lipólise/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408504

RESUMO

Dual target ligands are a promising concept for the treatment of Parkinson's disease (PD). A combination of monoamine oxidase B (MAO B) inhibition with histamine H3 receptor (H3R) antagonism could have positive effects on dopamine regulation. Thus, a series of twenty-seven 4-tert-butylphenoxyalkoxyamines were designed as potential dual-target ligands for PD based on the structure of 1-(3-(4-tert-butylphenoxy)propyl)piperidine (DL76). Probed modifications included the introduction of different cyclic amines and elongation of the alkyl chain. Synthesized compounds were investigated for human H3R (hH3R) affinity and human MAO B (hMAO B) inhibitory activity. Most compounds showed good hH3R affinities with Ki values below 400 nM, and some of them showed potent inhibitory activity for hMAO B with IC50 values below 50 nM. However, the most balanced activity against both biological targets showed DL76 (hH3R: Ki = 38 nM and hMAO B: IC50 = 48 nM). Thus, DL76 was chosen for further studies, revealing the nontoxic nature of DL76 in HEK293 and neuroblastoma SH-SY5Ycells. However, no neuroprotective effect was observed for DL76 in hydrogen peroxide-treated neuroblastoma SH-SY5Y cells. Furthermore, in vivo studies showed antiparkinsonian activity of DL76 in haloperidol-induced catalepsy (Cross Leg Position Test) at a dose of 50 mg/kg body weight.


Assuntos
Aminas/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Aminas/química , Animais , Catalepsia/induzido quimicamente , Catalepsia/fisiopatologia , Catalepsia/prevenção & controle , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Haloperidol , Antagonistas dos Receptores Histamínicos H3/química , Humanos , Cinética , Ligantes , Masculino , Estrutura Molecular , Inibidores da Monoaminoxidase/química , Doença de Parkinson/fisiopatologia , Doença de Parkinson/prevenção & controle , Ratos Wistar , Relação Estrutura-Atividade
8.
Bioorg Med Chem ; 27(7): 1195-1210, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30808606

RESUMO

N9-Benzyl-substituted imidazo-, pyrimido- and 1,3-diazepino[2,1-f]purinediones were designed as dual-target-directed ligands combining A2A adenosine receptor (AR) antagonistic activity with blockade of monoamine oxidase B (MAO-B). A library of 37 novel compounds was synthesized and biologically evaluated in radioligand binding studies at AR subtypes and for their ability to inhibit MAO-B. A systematic modification of the tricyclic structures based on a xanthine core by enlargement of the third heterocyclic ring or attachment of various substituted benzyl moieties resulted in the development of 9-(2-chloro-6-fluorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione (9u; Ki human A2AAR: 189 nM and IC50 human MAO-B: 570 nM) as the most potent dual acting ligand of the series displaying high selectivity versus related targets. Moreover, some potent, selective MAO-B inhibitors were identified in the group of pyrimido- and 1,3-diazepino[2,1-f]purinediones. Compound 10d (10-(3,4-dichlorobenzyl)-1,3-dimethyl-7,8,9,10-tetrahydro-1H-[1,3]diazepino[2,1-f]purine-2,4(3H,6H)-dione) displayed an IC50 value at human MAO-B of 83 nM. Analysis of structure-activity relationships was complemented by molecular docking studies based on previously published X-ray structures of the protein targets. An extended biological profile was determined for selected compounds including in vitro evaluation of potential hepatotoxicity calculated in silico and antioxidant properties as an additional desirable activity. The new molecules acting as dual target drugs may provide symptomatic relief as well as disease-modifying effects for neurodegenerative diseases, in particular Parkinson's disease.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Receptor A2A de Adenosina/metabolismo , Xantina/farmacologia , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade , Xantina/síntese química , Xantina/química
9.
Eur J Pharm Sci ; 129: 42-57, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594731

RESUMO

The treatment of epilepsy remains difficult mostly since almost 30% of patients suffer from pharmacoresistant forms of the disease. Therefore, there is an urgent need to search for new antiepileptic drug candidates. Previously, it has been shown that 4-alkyl-5-substituted-1,2,4-triazole-3-thione derivativatives possessed strong anticonvulsant activity in a maximal electroshock-induced seizure model of epilepsy. In this work, we examined the effect of the chemical structure of the 1,2,4-triazole-3-thione-based molecules on the anticonvulsant activity and the binding to voltage-gated sodium channels (VGSCs) and GABAA receptors. Docking simulations allowed us to determine the mode of interactions between the investigated compounds and binding cavity of the human VGSC. Selected compounds were also investigated in a panel of ADME-Tox assays, including parallel artificial membrane permeability assay (PAMPA), single cell gel electrophoresis (SCGE) and cytotoxicity evaluation in HepG2 cells. The obtained results indicated that unbranched alkyl chains, from butyl to hexyl, attached to 1,2,4-triazole core are essential both for good anticonvulsant activity and strong interactions with VGSCs. The combined in-vivo, in-vitro and in-silico studies emphasize 4-alkyl-5-substituted-1,2,4-triazole-3-thiones as promising agents in the development of new anticonvulsants.


Assuntos
Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Triazóis/química , Triazóis/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Simulação por Computador , Eletrochoque/métodos , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Simulação de Acoplamento Molecular/métodos , Receptores de GABA-A/metabolismo , Convulsões/tratamento farmacológico
10.
Bioorg Med Chem ; 26(23-24): 6056-6066, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30448256

RESUMO

As a continuation of our search for novel histamine H3 receptor ligands, a series of new acetyl and propionyl phenoxyalkylamine derivatives (2-25) was synthesized. Compounds with three to four carbon atoms alkyl chain spacer, composed of six various 4N-substituted piperazine moieties were evaluated for their binding properties at human histamine H3 receptors (hH3R). In vitro test results proved the 4-pyridylpiperazine moiety as crucial element for high hH3R affinity (hH3R Ki = 5.2-115 nM). Moreover introduction of carbonyl group containing residues in the lipophilic part of molecules instead of branched alkyl substituents resulted in increased affinity in correlation to previously described series, whereas propionyl derivatives showed slightly higher affinities than those of acetyl (16 and 22vs.4 and 10; hH3R Ki = 5.2 and 15.4 nM vs. 10.2 and 115 nM, respectively). These findings were confirmed by molecular modelling studies, demonstrating multiple ligand-receptor interactions. Furthermore, pharmacological in vivo test results of compound 4 clearly indicate that it may affect the amount of calories consumed, thus act as an anorectic compound. Likewise, its protective action against hyperglycemia and the development of overweight has been shown. In order to estimate drug-likeness of compound 4, in silico and experimental evaluation of metabolic stability in human liver microsomes was performed.


Assuntos
Antineoplásicos/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Piperazina/farmacologia , Receptores Histamínicos H3/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Antagonistas dos Receptores Histamínicos H3/síntese química , Antagonistas dos Receptores Histamínicos H3/química , Humanos , Ligantes , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Piperazina/síntese química , Piperazina/química , Ratos , Relação Estrutura-Atividade
11.
Medchemcomm ; 9(6): 951-962, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108984

RESUMO

A library of 27 novel amide derivatives of annelated xanthines was designed and synthesized. The new compounds represent 1,3-dipropyl- and 1,3-dibutyl-pyrimido[2,1-f]purinedione-9-ethylphenoxy derivatives including a CH2CONH linker between the (CH2)2-amino group and the phenoxy moiety. A synthetic strategy to obtain the final products was developed involving solvent-free microwave irradiation. The new compounds were evaluated for their adenosine receptor (AR) affinities. The most potent derivatives contained a terminal tertiary amino function. Compounds with nanomolar AR affinities and at the same time high water-solubility were obtained (A1 (Ki = 24-605 nM), A2A (Ki = 242-1250 nM), A2B (Ki = 66-911 nM) and A3 (Ki = 155-1000 nM)). 2-(4-(2-(1,3-Dibutyl-2,4-dioxo-1,2,3,4,7,8-hexahydropyrimido[2,1-f]purin-9(6H)-yl)ethyl)phenoxy)-N-(3-(diethylamino)propyl)acetamide (27) and the corresponding N-(2-(pyrrolidin-1-yl)ethyl)acetamide (36) were found to be the most potent antagonists of the present series. While 27 showed CYP inhibition and moderate metabolic stability, 36 was found to possess suitable properties for in vivo applications. In an attempt to explain the affinity data for the synthesized compounds, molecular modeling and docking studies were performed using homology models of A1 and A2A adenosine receptors. The potent compound 36 was used as an example for discussion of the possible ligand-protein interactions. Moreover, the compounds showed high water-solubility indicating that the approach of introducing a basic side chain was successful for the class of generally poorly soluble AR antagonists.

12.
J Med Chem ; 61(10): 4301-4316, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29681156

RESUMO

Fluorescent ligands represent powerful tools for biological studies and are considered attractive alternatives to radioligands. In this study, we developed fluorescent antagonists for A2B adenosine receptors (A2BARs), which are targeted by antiasthmatic xanthines and were proposed as novel targets in immuno-oncology. Our approach was to merge a small borondipyrromethene (BODIPY) derivative with the pharmacophore of 8-substituted xanthine derivatives. On the basis of the design, synthesis, and evaluation of model compounds, several fluorescent ligands were synthesized. Compound 29 (PSB-12105), which displayed high affinity for human, rat, and mouse A2BARs ( Ki = 0.2-2 nM) and high selectivity for this AR subtype, was selected for further studies. A homology model of the human A2BAR was generated, and docking studies were performed. Moreover, 29 allowed us to establish a homogeneous receptor-ligand binding assay using flow cytometry. These compounds constitute the first potent, selective fluorescent A2BAR ligands and are anticipated to be useful for a variety of applications.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Receptor A2B de Adenosina/química , Animais , Ligação Competitiva , Células CHO , Proliferação de Células , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Ensaio Radioligante , Ratos
13.
Bioorg Med Chem ; 26(9): 2573-2585, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29681486

RESUMO

A series of 1- and 2-naphthyloxy derivatives were synthesized and evaluated for histamine H3 receptor affinity. Most compounds showed high affinities with Ki values below 100 nM. The most potent ligand, 1-(5-(naphthalen-1-yloxy)pentyl)azepane (11) displayed high affinity for the histamine H3 receptor with a Ki value of 21.9 nM. The antagonist behaviour of 11 was confirmed both in vitro in the cAMP assay (IC50 = 312 nM) and in vivo in the rat dipsogenia model (ED50 = 3.68 nM). Moreover, compound 11 showed positive effects on scopolamine induced-memory deficits in mice (at doses of 10 and 15 mg/kg) and an analgesic effect in the formalin test in mice with ED50 = 30.6 mg/kg (early phase) and ED50 = 20.8 mg/kg (late phase). Another interesting compound, 1-(5-(Naphthalen-1-yloxy)pentyl)piperidine (13; H3R Ki = 53.9 nM), was accepted for Anticonvulsant Screening Program at the National Institute of Neurological Disorders and Stroke/National Institute of Health (Rockville, USA). The screening was performed in the maximal electroshock seizure (MES), the subcutaneous pentylenetetrazole (scPTZ) and the 6-Hz psychomotor animal models of epilepsy. Neurologic deficit was evaluated by the rotarod test. Compound 13 inhibited convulsions induced by the MES with ED50 of 19.2 mg/kg (mice, i.p.), 17.8 (rats, i.p.), and 78.1 (rats, p.o.). Moreover, 13 displayed protection against the 6-Hz psychomotor seizures (32 mA) in mice (i.p.) with ED50 of 33.1 mg/kg and (44 mA) ED50 of 57.2 mg/kg. Furthermore, compounds 11 and 13 showed in vitro weak influence on viability of tested cell lines (normal HEK293, neuroblastoma IMR-32, hepatoma HEPG2), weak inhibition of CYP3A4 activity, and no mutagenicity. Thus, these compounds may be used as leads in a further search for histamine H3 receptor ligands with promising in vitro and in vivo activity.


Assuntos
Anticonvulsivantes/farmacologia , Azepinas/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Naftalenos/farmacologia , Piperidinas/farmacologia , Analgésicos/administração & dosagem , Analgésicos/síntese química , Analgésicos/farmacologia , Analgésicos/toxicidade , Animais , Antazolina/farmacologia , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/síntese química , Anticonvulsivantes/toxicidade , Atropina/farmacologia , Azepinas/administração & dosagem , Azepinas/síntese química , Azepinas/toxicidade , Relação Dose-Resposta a Droga , Cobaias , Células HEK293 , Antagonistas dos Receptores Histamínicos H3/administração & dosagem , Antagonistas dos Receptores Histamínicos H3/síntese química , Antagonistas dos Receptores Histamínicos H3/toxicidade , Humanos , Ligantes , Masculino , Camundongos , Naftalenos/administração & dosagem , Naftalenos/síntese química , Naftalenos/toxicidade , Piperidinas/administração & dosagem , Piperidinas/síntese química , Piperidinas/toxicidade , Ratos Wistar , Receptor Muscarínico M3/metabolismo , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H3/metabolismo
14.
Bioorg Med Chem ; 25(20): 5341-5354, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28797771

RESUMO

Novel biphenyloxy-alkyl derivatives of piperidine and azepane were synthesized and evaluated for their binding properties at the human histamine H3 receptor. Two series of compounds were obtained with a meta- and a para-biphenyl moiety. The alkyl chain spacer contained five and six carbon atoms. The highest affinity among all compounds was shown by 1-(6-(3-phenylphenoxy)hexyl)azepane (13) with a Ki value of 18nM. Two para-biphenyl derivatives, 1-(5-(4-phenylphenoxy)pentyl)piperidine (14; Ki=25nM) and 1-(5-(4-phenylphenoxy)pentyl)azepane (16; Ki=34nM), classified as antagonists in a cAMP accumulation assay (IC50=4 and 9nM, respectively), were studied in detail. Compounds 14 and 16 blocked RAMH-induced dipsogenia in rats (ED50 of 2.72mg/kg and 1.75mg/kg respectively), and showed high selectivity (hH4R vs hH3R>600-fold) and low toxicity (hERG inhibition: IC50>1.70µM; hepatotoxicity IC50>12.5µM; non-mutagenic up to 10µM). Furthermore, the metabolic stability was evaluated in vitro on human liver microsomes (HLMs) and/or rat liver microsomes (RLMs). Metabolites produced were analyzed and tentatively identified by UPLC-MS techniques. The results demonstrated easy hydroxylation of the biphenyl ring.


Assuntos
Azepinas/farmacologia , Piperidinas/farmacologia , Receptores Histamínicos H3/metabolismo , Animais , Azepinas/síntese química , Azepinas/química , Proliferação de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Cobaias , Células HEK293 , Células Hep G2 , Humanos , Ligantes , Masculino , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Ratos , Ratos Wistar , Receptor Muscarínico M3/antagonistas & inibidores , Receptor Muscarínico M3/metabolismo , Receptores Histamínicos H1/metabolismo , Relação Estrutura-Atividade
15.
Int J Med Sci ; 14(8): 741-749, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824309

RESUMO

Previously, it was found that 5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (TP-315) effectively protects mice from maximal electroshock-induced seizures. The aim of this study was to determine possible interactions between TP-315 and different molecular targets, i.e. GABAA receptors, voltage-gated sodium channels, and human neuronal α7 and α4ß2 nicotinic acetylcholine receptors. The influence of TP-315 on the viability of human hepatic HepG2 cells was also established using PrestoBlue and ToxiLight assays. It was found that the anticonvulsant activity of TP-315 results (at least partially) from its influence on voltage-gated sodium channels (VGSCs). Moreover, the title compound slightly affected the viability of human hepatic cells.


Assuntos
Anticonvulsivantes/administração & dosagem , Convulsões/tratamento farmacológico , Tionas/administração & dosagem , Canais de Sódio Disparados por Voltagem/genética , Animais , Modelos Animais de Doenças , Eletrochoque/efeitos adversos , Células Hep G2 , Humanos , Camundongos , Técnicas de Patch-Clamp , Convulsões/genética , Convulsões/patologia , Triazóis/administração & dosagem , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos
16.
Eur J Med Chem ; 124: 456-467, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27598234

RESUMO

Based on our recent finding that α1 selective GABA-A receptor potentiator-zolpidem-(a hypnotic drug) exerts antipsychotic-like effects in rats, we developed a series of fluorinated imidazo[1,2-a]pyridine derivatives as potential novel antipsychotic agents. The selected compounds displayed high affinity and positive allosteric modulator properties at the GABA-A receptor, enhanced metabolic stability and lack of hepatotoxicity. The most promising compound 2-(2-(4-fluorophenyl)-6-methylimidazo[1,2-a]pyridin-3-yl)-N,N-dimethylethanamide (26) showed antipsychotic-like activity in amphetamine-induced hyperlocomotion test in rats (MED = 1 mg/kg) and was characterized by a longer duration of antipsychotic-like activity as compared to zolpidem. These results are an encouraging example of a compound with non-dopaminergic mechanism of action displaying antipsychotic activity and are a point of entry for the future studies in this field.


Assuntos
Antipsicóticos/síntese química , Antipsicóticos/farmacologia , Desenho de Fármacos , Halogenação , Piridinas/síntese química , Piridinas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Antipsicóticos/química , Antipsicóticos/toxicidade , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células Hep G2 , Humanos , Piridinas/química , Piridinas/toxicidade , Ratos , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo
17.
Bioorg Med Chem ; 24(18): 4347-4362, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27485602

RESUMO

A new series of 32 pyrimido- and 5 tetrahydropyrazino[2,1-f]purinediones was obtained and evaluated for their adenosine receptors (ARs) affinities. The 1,3-dibutyl derivative of 9-(4-(2-(dimethylamino)ethoxy)phenyl)-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione was found to be the most potent A1 AR antagonist of the present series, showing selectivity over the other AR subtypes. The structure-activity for the obtained purinediones was established. Docking experiments of the investigated library to homology models of the human and rat A1 and A2A ARs allowed to compare the expected binding modes for selected compounds. The detailed analysis of binding cavities within individual AR subtypes indicated small but significant structural variations that may underlie the observed differences in binding affinities of purinediones at particular subtypes and species.


Assuntos
Receptores Purinérgicos P1/efeitos dos fármacos , Xantinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cricetulus , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Receptores Purinérgicos P1/metabolismo , Homologia de Sequência de Aminoácidos , Espectrofotometria Infravermelho , Relação Estrutura-Atividade , Xantinas/química , Xantinas/farmacologia
18.
Chem Biol Drug Des ; 88(2): 254-63, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26931395

RESUMO

The involvement of histamine and H4 receptor (H4 R) in cancer has been investigated recently using the H4 R agonists and antagonists. The scope of the research project was synthesis and exploration of the consequences of a group of compounds with histamine H4 receptor (H4 R) affinity on the promoter of PTEN gene encoding the antitumor PTEN protein. The series of novel compounds based either on H4 R antagonists JNJ7777120 structure or 1,3,5-triazine scaffold were synthesized, evaluated for histamine H4 R affinity and used in this study. Compounds 5 and 7 belonging to the group of JNJ7777120 analogues showed the highest interaction with the promoter of PTEN gene and weak affinity against H4 R with Ki value >100 µm. These compounds showed no significant effect on neuroblastoma IMR-32 cells viability indicating no correlation between PTEN gene promoter affinity and antitumor activity. Compound 6, another JNJ7777120 analogue, showed the highest effect on IMR-32 viability with calculated IC50 = 23.27 µm. The 1,3,5-triazine derivatives exhibited generally low or medium interaction with PTEN gene promoter. However, the 1,3,5-triazine derivative 11 with the para-bromo substituent showed the highest affinity against H4 R with Ki value of 520 nm and may be considered as a new lead structure.


Assuntos
Indóis/síntese química , PTEN Fosfo-Hidrolase/genética , Piperazinas/síntese química , Regiões Promotoras Genéticas , Receptores Histamínicos/efeitos dos fármacos , Triazinas/síntese química , Triazinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Indóis/química , Indóis/farmacologia , Piperazinas/química , Piperazinas/farmacologia
19.
Bioorg Med Chem ; 24(2): 53-72, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26690914

RESUMO

A series of twenty new chlorophenoxyalkylamine derivatives (9-28) was synthesized and evaluated on their binding properties at the human histamine H3 receptor (hH3R). The spacer alkyl chain contained five to seven carbon atoms. The highest affinities have shown the 4-chloro substituted derivatives 10 and 25 (Ki=133 and 128 nM, respectively) classified as antagonists in cAMP accumulation assay (EC50=72 and 75 nM, respectively). Synthesized compounds were also evaluated for anticonvulsant activity in Antiepileptic Screening Program (ASP) at National Institute of Neurological Disorders and Stroke (USA). Two compounds (4-chloro substituted derivatives: 20 and 26) were the most promising and showed in the MES seizure model in rats (after ip administration) ED50 values of 14 mg/kg and 13.18 mg/kg, respectively. Protective indexes (PI=TD50/ED50) were 3.2 for 20 and 3.8 for 26. Moreover, molecular modeling and docking studies were undertaken to explain affinity at hH3R of target compounds, and the experimentally and in silico estimation of properties like lipophilicity and metabolism was performed. Antiproliferative effects have been also investigated in vitro for selected compounds (10 and 25). These compounds neither possessed significant antiproliferative and antitumor activity, nor modulated CYP3A4 activity up to concentration of 10 µM.


Assuntos
Anticonvulsivantes/farmacologia , Receptores Histamínicos H3/metabolismo , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Relação Dose-Resposta a Droga , Eletrochoque , Humanos , Ligantes , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
20.
Arch Pharm (Weinheim) ; 348(10): 704-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248713

RESUMO

A series of annelated derivatives of xanthine were synthesized and assayed as potential analgesic agents. All synthesized xanthine derivatives were tested in the writhing test and hot-plate test. The pharmacological assays demonstrated that all the compounds prepared, without exception, displayed a significant activity in the mouse writhing assay. The analgesic action of the most active compounds, expressed as ED50 was found to be 1.4-4.3 times more potent than that of acetylsalicylic acid used as the reference compound. However, only some of the compounds demonstrated analgesic activity in the hot-plate test. The analgesic effect of some compounds is probably related to their agonistic, antagonistic, or partial agonistic activity at the adenosine receptors.


Assuntos
Analgésicos/síntese química , Analgésicos/farmacologia , Dor/prevenção & controle , Xantinas/síntese química , Xantinas/farmacologia , Analgésicos/metabolismo , Analgésicos/toxicidade , Animais , Aspirina/farmacologia , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Desenho de Fármacos , Interações Medicamentosas , Células HEK293 , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Dor/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Ratos , Tempo de Reação/efeitos dos fármacos , Receptores Purinérgicos P1/efeitos dos fármacos , Receptores Purinérgicos P1/metabolismo , Relação Estrutura-Atividade , Xantinas/metabolismo , Xantinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA