Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38896024

RESUMO

Growing evidence has linked inflammatory processes to cognitive decline and dementia. This work examines whether an epigenetic marker of C-reactive protein (CRP), a common clinical inflammatory biomarker, may mediate the relationship between educational attainment and cognition. We first evaluated whether 53 previously reported CRP-associated DNA methylation sites (CpGs) are associated with CRP, both individually and aggregated into a methylation risk score (MRSCRP), in 3 298 participants from the Health and Retirement Study (HRS, mean age = 69.7 years). Forty-nine CpGs (92%) were associated with the natural logarithm of CRP in HRS after adjusting for age, sex, smoking, BMI, genetic ancestry, and white blood cell counts (p < .05), and each standard deviation increase in MRSCRP was associated with a 0.38 unit increase in lnCRP (p = 4.02E-99). In cross-sectional analysis, for each standard deviation increase in MRSCRP, total memory score and total cognitive score decreased, on average, by 0.28 words and 0.43 items, respectively (p < .001). Further, MRSCRP mediated 6.9% of the relationship between high school education and total memory score in a model adjusting for age, sex, and genetic ancestry (p < .05); this was attenuated to 2.4% with additional adjustment for marital status, APOE ε4 status, health behaviors, and comorbidities (p < .05). Thus, CRP-associated methylation may partially mediate the relationship between education and cognition at older ages. Further research is warranted to determine whether DNA methylation at these sites may improve current prediction models for cognitive impairment in older adults.


Assuntos
Proteína C-Reativa , Cognição , Ilhas de CpG , Metilação de DNA , Escolaridade , Humanos , Masculino , Feminino , Idoso , Proteína C-Reativa/metabolismo , Proteína C-Reativa/genética , Cognição/fisiologia , Ilhas de CpG/genética , Estudos Transversais , Biomarcadores/sangue , Disfunção Cognitiva/genética , Pessoa de Meia-Idade
2.
BMC Med Genomics ; 17(1): 146, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802805

RESUMO

BACKGROUND: Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia. METHODS: We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS). As a sensitivity analysis, we examined the same associations in participants who fasted prior to the blood draw (n = 2,531) and in participants who did not take lipid-lowering medication (n = 1,869). Using interaction models, we also examined whether demographic factors including age, sex, and educational attainment modified the relationships between epigenetic age acceleration and blood lipids. RESULTS: After adjusting for age, race/ethnicity, sex, fasting status, and lipid-lowering medication use, greater epigenetic age acceleration was associated with lower TC, HDL-C, and LDL-C, and higher TG (p < 0.05), although the effect sizes were relatively small (e.g., < 7 mg/dL of TC per standard deviation in epigenetic age acceleration). GrimAge acceleration and DunedinPACE associations with all lipids remained significant after further adjustment for body mass index, smoking status, and educational attainment. These associations were stronger in participants who fasted and who did not use lipid-lowering medication, particularly for LDL-C. We observed the largest number of interactions between DunedinPACE and demographic factors, where the associations with lipids were stronger in younger participants, females, and those with higher educational attainment. CONCLUSION: Multiple measures of epigenetic age acceleration are associated with blood lipid levels in older adults. A greater understanding of how these associations differ across demographic groups can help shed light on the relationships between aging and downstream cardiovascular diseases. The inverse associations between epigenetic age and TC and LDL-C could be due to sample limitations or non-linear relationships between age and these lipids, as both TC and LDL-C decrease faster at older ages.


Assuntos
Envelhecimento , Epigênese Genética , Lipídeos , Humanos , Idoso , Feminino , Masculino , Lipídeos/sangue , Envelhecimento/sangue , Envelhecimento/genética , Estados Unidos , Metilação de DNA , Estudos Transversais , Pessoa de Meia-Idade
3.
Res Sq ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464171

RESUMO

Background: Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia. Methods: We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS). As a sensitivity analysis, we examined the same associations in participants who fasted prior to the blood draw (n = and f) and in participants who did not take lipid-lowering medication (n = 1,869). Using interaction models, we also examined whether the relationships between epigenetic age acceleration and blood lipids differ by demographic factors including age, sex, and educational attainment. Results: After adjusting for age, race/ethnicity, sex, fasting status, and lipid-lowering medication use, greater epigenetic age acceleration was associated with lower TC, HDL-C, and LDL-C, and higher TG (p < 0.05). GrimAge acceleration and DunedinPACE associations with all lipids remained significant after further adjusting for body mass index, smoking status, and educational attainment. These associations were stronger in participants who fasted and who did not use lipid-lowering medication, particularly for LDL-C. We observed the largest number of interactions between DunedinPACE and demographic factors, where the associations with lipids were stronger in younger participants, females, and those with higher educational attainment. Conclusion: Epigenetic age acceleration, a powerful biomarker of cellular aging, is highly associated with blood lipid levels in older adults. A greater understanding of how these associations differ across demographic groups can help shed light on the relationships between aging and downstream cardiovascular diseases. The inverse associations between epigenetic age and TC and LDL-C could be due to sample limitations or the non-linear relationship between age and these lipids, as both TC and LDL-C decrease faster at older ages. More studies are needed to further understand the temporal relationships between epigenetic age acceleration on blood lipids and other health outcomes.

4.
Nat Genet ; 55(10): 1640-1650, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709864

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is common and partially heritable and has no effective treatments. We carried out a genome-wide association study (GWAS) meta-analysis of imaging (n = 66,814) and diagnostic code (3,584 cases versus 621,081 controls) measured NAFLD across diverse ancestries. We identified NAFLD-associated variants at torsin family 1 member B (TOR1B), fat mass and obesity associated (FTO), cordon-bleu WH2 repeat protein like 1 (COBLL1)/growth factor receptor-bound protein 14 (GRB14), insulin receptor (INSR), sterol regulatory element-binding transcription factor 1 (SREBF1) and patatin-like phospholipase domain-containing protein 2 (PNPLA2), as well as validated NAFLD-associated variants at patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily 2 (TM6SF2), apolipoprotein E (APOE), glucokinase regulator (GCKR), tribbles homolog 1 (TRIB1), glycerol-3-phosphate acyltransferase (GPAM), mitochondrial amidoxime-reducing component 1 (MARC1), microsomal triglyceride transfer protein large subunit (MTTP), alcohol dehydrogenase 1B (ADH1B), transmembrane channel like 4 (TMC4)/membrane-bound O-acyltransferase domain containing 7 (MBOAT7) and receptor-type tyrosine-protein phosphatase δ (PTPRD). Implicated genes highlight mitochondrial, cholesterol and de novo lipogenesis as causally contributing to NAFLD predisposition. Phenome-wide association study (PheWAS) analyses suggest at least seven subtypes of NAFLD. Individuals in the top 10% and 1% of genetic risk have a 2.5-fold to 6-fold increased risk of NAFLD, cirrhosis and hepatocellular carcinoma. These genetic variants identify subtypes of NAFLD, improve estimates of disease risk and can guide the development of targeted therapeutics.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estudo de Associação Genômica Ampla , Cirrose Hepática/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Fosfolipases/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
5.
Nature ; 616(7958): 755-763, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046083

RESUMO

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Assuntos
Hematopoiese Clonal , Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Alelos , Hematopoiese Clonal/genética , Estudo de Associação Genômica Ampla , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Regiões Promotoras Genéticas
7.
Nat Genet ; 55(2): 291-300, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702996

RESUMO

Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.


Assuntos
Reposicionamento de Medicamentos , Transcriptoma , Humanos , Transcriptoma/genética , Estudo de Associação Genômica Ampla/métodos , Uso de Tabaco , Biologia , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
8.
JMIR Cancer ; 8(3): e37793, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112409

RESUMO

BACKGROUND: Precision oncology is one of the fastest-developing domains of personalized medicine and is one of many data-intensive fields. Policy for health information sharing that is informed by patient perspectives can help organizations align practice with patient preferences and expectations, but many patients are largely unaware of the complexities of how and why clinical health information is shared. OBJECTIVE: This paper evaluates the process of public deliberation as an approach to understanding the values and preferences of current and former patients with cancer regarding the use and sharing of health information collected in the context of precision oncology. METHODS: We conducted public deliberations with patients who had a current or former cancer diagnosis. A total of 61 participants attended 1 of 2 deliberative sessions (session 1, n=28; session 2, n=33). Study team experts led two educational plenary sessions, and trained study team members then facilitated discussions with small groups of participants. Participants completed pre- and postdeliberation surveys measuring knowledge, attitudes, and beliefs about precision oncology and data sharing. Following informational sessions, participants discussed, ranked, and deliberated two policy-related scenarios in small groups and in a plenary session. In the analysis, we evaluate our process of developing the deliberative sessions, the knowledge gained by participants during the process, and the extent to which participants reasoned with complex information to identify policy preferences. RESULTS: The deliberation process was rated highly by participants. Participants felt they were listened to by their group facilitator, that their opinions were respected by their group, and that the process that led to the group's decision was fair. Participants demonstrated improved knowledge of health data sharing policies between pre- and postdeliberation surveys, especially regarding the roles of physicians and health departments in health information sharing. Qualitative analysis of reasoning revealed that participants recognized complexity, made compromises, and engaged with trade-offs, considering both individual and societal perspectives related to health data sharing. CONCLUSIONS: The deliberative approach can be valuable for soliciting the input of informed patients on complex issues such as health information sharing policy. Participants in our two public deliberations demonstrated that giving patients information about a complex topic like health data sharing and the opportunity to reason with others and discuss the information can help garner important insights into policy preferences and concerns. Data on public preferences, along with the rationale for information sharing, can help inform policy-making processes. Increasing transparency and patient engagement is critical to ensuring that data-driven health care respects patient autonomy and honors patient values and expectations.

9.
Nat Hum Behav ; 6(11): 1577-1586, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35927319

RESUMO

Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this 'missing heritability'. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Frequência do Gene , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Fumar/genética
10.
Front Cardiovasc Med ; 9: 848768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665255

RESUMO

Low socioeconomic status (SES) and living in a disadvantaged neighborhood are associated with poor cardiovascular health. Multiple lines of evidence have linked DNA methylation to both cardiovascular risk factors and social disadvantage indicators. However, limited research has investigated the role of DNA methylation in mediating the associations of individual- and neighborhood-level disadvantage with multiple cardiovascular risk factors in large, multi-ethnic, population-based cohorts. We examined whether disadvantage at the individual level (childhood and adult SES) and neighborhood level (summary neighborhood SES as assessed by Census data and social environment as assessed by perceptions of aesthetic quality, safety, and social cohesion) were associated with 11 cardiovascular risk factors including measures of obesity, diabetes, lipids, and hypertension in 1,154 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). For significant associations, we conducted epigenome-wide mediation analysis to identify methylation sites mediating the relationship between individual/neighborhood disadvantage and cardiovascular risk factors using the JT-Comp method that assesses sparse mediation effects under a composite null hypothesis. In models adjusting for age, sex, race/ethnicity, smoking, medication use, and genetic principal components of ancestry, epigenetic mediation was detected for the associations of adult SES with body mass index (BMI), insulin, and high-density lipoprotein cholesterol (HDL-C), as well as for the association between neighborhood socioeconomic disadvantage and HDL-C at FDR q < 0.05. The 410 CpG mediators identified for the SES-BMI association were enriched for CpGs associated with gene expression (expression quantitative trait methylation loci, or eQTMs), and corresponding genes were enriched in antigen processing and presentation pathways. For cardiovascular risk factors other than BMI, most of the epigenetic mediators lost significance after controlling for BMI. However, 43 methylation sites showed evidence of mediating the neighborhood socioeconomic disadvantage and HDL-C association after BMI adjustment. The identified mediators were enriched for eQTMs, and corresponding genes were enriched in inflammatory and apoptotic pathways. Our findings support the hypothesis that DNA methylation acts as a mediator between individual- and neighborhood-level disadvantage and cardiovascular risk factors, and shed light on the potential underlying epigenetic pathways. Future studies are needed to fully elucidate the biological mechanisms that link social disadvantage to poor cardiovascular health.

11.
Mol Genet Genomic Med ; 10(4): e1896, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179313

RESUMO

BACKGROUND: Age at final menstrual period (FMP) and the accompanying hormone trajectories across the menopause transition do not occur in isolation, but likely share molecular pathways. Understanding the genetics underlying the endocrinology of the menopause transition may be enhanced by jointly analyzing multiple interrelated traits. METHODS: In a sample of 347 White and 164 Black women from the Study of Women's Health Across the Nation (SWAN), we investigated pleiotropic effects of 54 candidate genetic regions of interest (ROI) on 5 menopausal traits (age at FMP and premenopausal and postmenopausal levels of follicle stimulation hormone and estradiol) using multivariate kernel regression (Multi-SKAT). A backward elimination procedure was used to identify which subset of traits were most strongly associated with a specific ROI. RESULTS: In White women, the 20 kb ROI around rs10734411 was significantly associated with the multivariate distribution of age at FMP, premenopausal estradiol, and postmenopausal estradiol (omnibus p-value = .00004). This association did not replicate in the smaller sample of Black women. CONCLUSION: This study using a region-based, multiple-trait approach suggests a shared genetic basis among multiple facets of reproductive aging.


Assuntos
Envelhecimento , Hormônio Foliculoestimulante , Envelhecimento/genética , População Negra , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Humanos , Menopausa/genética
12.
J Clin Endocrinol Metab ; 106(2): 372-387, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33231259

RESUMO

CONTEXT: Glycogen storage diseases are rare. Increased glycogen in the liver results in increased attenuation. OBJECTIVE: Investigate the association and function of a noncoding region associated with liver attenuation but not histologic nonalcoholic fatty liver disease. DESIGN: Genetics of Obesity-associated Liver Disease Consortium. SETTING: Population-based. MAIN OUTCOME: Computed tomography measured liver attenuation. RESULTS: Carriers of rs4841132-A (frequency 2%-19%) do not show increased hepatic steatosis; they have increased liver attenuation indicative of increased glycogen deposition. rs4841132 falls in a noncoding RNA LOC157273 ~190 kb upstream of PPP1R3B. We demonstrate that rs4841132-A increases PPP1R3B through a cis genetic effect. Using CRISPR/Cas9 we engineered a 105-bp deletion including rs4841132-A in human hepatocarcinoma cells that increases PPP1R3B, decreases LOC157273, and increases glycogen perfectly mirroring the human disease. Overexpression of PPP1R3B or knockdown of LOC157273 increased glycogen but did not result in decreased LOC157273 or increased PPP1R3B, respectively, suggesting that the effects may not all occur via affecting RNA levels. Based on electronic health record (EHR) data, rs4841132-A associates with all components of the metabolic syndrome (MetS). However, rs4841132-A associated with decreased low-density lipoprotein (LDL) cholesterol and risk for myocardial infarction (MI). A metabolic signature for rs4841132-A includes increased glycine, lactate, triglycerides, and decreased acetoacetate and beta-hydroxybutyrate. CONCLUSIONS: These results show that rs4841132-A promotes a hepatic glycogen storage disease by increasing PPP1R3B and decreasing LOC157273. rs4841132-A promotes glycogen accumulation and development of MetS but lowers LDL cholesterol and risk for MI. These results suggest that elevated hepatic glycogen is one cause of MetS that does not invariably promote MI.


Assuntos
Doença de Depósito de Glicogênio/etiologia , Glicogênio Hepático/metabolismo , Síndrome Metabólica/etiologia , Infarto do Miocárdio/prevenção & controle , Polimorfismo de Nucleotídeo Único , Proteína Fosfatase 1/genética , Adulto , Idoso , Biomarcadores/análise , Feminino , Seguimentos , Doença de Depósito de Glicogênio/metabolismo , Doença de Depósito de Glicogênio/patologia , Humanos , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Prognóstico , Estudos Prospectivos
13.
Nature ; 586(7831): 763-768, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057201

RESUMO

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.


Assuntos
Hematopoiese Clonal/genética , Predisposição Genética para Doença , Genoma Humano/genética , Sequenciamento Completo do Genoma , Adulto , África/etnologia , Idoso , Idoso de 80 Anos ou mais , População Negra/genética , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Mutação em Linhagem Germinativa/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Medicina de Precisão , Proteínas Proto-Oncogênicas/genética , Proteínas com Motivo Tripartido/genética , Estados Unidos , alfa Carioferinas/genética
14.
BMC Med Genomics ; 13(1): 131, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917208

RESUMO

BACKGROUND: Hypertension is a major modifiable risk factor for arteriosclerosis that can lead to target organ damage (TOD) of heart, kidneys, and peripheral arteries. A recent epigenome-wide association study for blood pressure (BP) identified 13 CpG sites, but it is not known whether DNA methylation at these sites is also associated with TOD. METHODS: In 1218 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study, a cohort of hypertensive sibships, we evaluated the associations between methylation at these 13 CpG sites measured in peripheral blood leukocytes and five TOD traits assessed approximately 5 years later. RESULTS: Ten significant associations were found after adjustment for age, sex, blood cell counts, time difference between CpG and TOD measurement, and 10 genetic principal components (FDR q < 0.1): two with estimated glomerular filtration rate (eGFR, cg06690548, cg10601624), six with urinary albumin-to-creatinine ratio (UACR, cg16246545, cg14476101, cg19693031, cg06690548, cg00574958, cg22304262), and two with left ventricular mass indexed to height (LVMI, cg19693031, cg00574958). All associations with eGFR and four associations with UACR remained significant after further adjustment for body mass index (BMI), smoking status, and diabetes. We also found significant interactions between cg06690548 and BMI on UACR, and between 3 CpG sites (cg19693031, cg14476101, and cg06690548) and diabetes on UACR (FDR q < 0.1). Mediation analysis showed that 4.7% to 38.1% of the relationship between two CpG sites (cg19693031 and cg00574958) and two TOD measures (UACR and LVMI) was mediated by blood pressure (Bonferroni-corrected P < 0.05). Mendelian randomization analysis suggests that methylation at two sites (cg16246545 and cg14476101) in PHGDH may causally influence UACR. CONCLUSIONS: In conclusion, we found compelling evidence for associations between arteriosclerotic traits of kidney and heart and previously identified blood pressure-associated DNA methylation sites. This study may lend insight into the role of DNA methylation in pathological mechanisms underlying target organ damage from hypertension.


Assuntos
Arteriosclerose/fisiopatologia , Negro ou Afro-Americano/estatística & dados numéricos , Doenças Cardiovasculares/patologia , Metilação de DNA , Epigênese Genética , Hipertensão/complicações , Nefropatias/patologia , Pressão Sanguínea , Doenças Cardiovasculares/etiologia , Estudos de Coortes , Feminino , Taxa de Filtração Glomerular , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Nefropatias/etiologia , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Fatores de Risco
15.
PLoS One ; 15(5): e0230815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379818

RESUMO

Smoking is a potentially causal behavioral risk factor for type 2 diabetes (T2D), but not all smokers develop T2D. It is unknown whether genetic factors partially explain this variation. We performed genome-environment-wide interaction studies to identify loci exhibiting potential interaction with baseline smoking status (ever vs. never) on incident T2D and fasting glucose (FG). Analyses were performed in participants of European (EA) and African ancestry (AA) separately. Discovery analyses were conducted using genotype data from the 50,000-single-nucleotide polymorphism (SNP) ITMAT-Broad-CARe (IBC) array in 5 cohorts from from the Candidate Gene Association Resource Consortium (n = 23,189). Replication was performed in up to 16 studies from the Cohorts for Heart Aging Research in Genomic Epidemiology Consortium (n = 74,584). In meta-analysis of discovery and replication estimates, 5 SNPs met at least one criterion for potential interaction with smoking on incident T2D at p<1x10-7 (adjusted for multiple hypothesis-testing with the IBC array). Two SNPs had significant joint effects in the overall model and significant main effects only in one smoking stratum: rs140637 (FBN1) in AA individuals had a significant main effect only among smokers, and rs1444261 (closest gene C2orf63) in EA individuals had a significant main effect only among nonsmokers. Three additional SNPs were identified as having potential interaction by exhibiting a significant main effects only in smokers: rs1801232 (CUBN) in AA individuals, rs12243326 (TCF7L2) in EA individuals, and rs4132670 (TCF7L2) in EA individuals. No SNP met significance for potential interaction with smoking on baseline FG. The identification of these loci provides evidence for genetic interactions with smoking exposure that may explain some of the heterogeneity in the association between smoking and T2D.


Assuntos
Glicemia/análise , Fumar Cigarros/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Jejum/sangue , Genótipo , Adulto , Idoso , População Negra/genética , Fumar Cigarros/etnologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etnologia , Estudos de Viabilidade , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Risco , População Branca/genética
16.
BMC Med Genomics ; 12(1): 141, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640709

RESUMO

BACKGROUND: Epigenetic age acceleration, a measure of biological aging based on DNA methylation, is associated with cardiovascular mortality. However, little is known about its relationship with hypertensive target organ damage to the heart, kidneys, brain, and peripheral arteries. METHODS: We investigated associations between intrinsic (IEAA) or extrinsic (EEAA) epigenetic age acceleration, blood pressure, and six types of organ damage in a primarily hypertensive cohort of 1390 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. DNA methylation from peripheral blood leukocytes was collected at baseline (1996-2000), and measures of target organ damage were assessed in a follow-up visit (2000-2004). Linear regression with generalized estimating equations was used to test for associations between epigenetic age acceleration and target organ damage, as well as effect modification of epigenetic age by blood pressure or sex. Sequential Oligogenic Linkage Analysis Routines (SOLAR) was used to test for evidence of shared genetic and/or environmental effects between epigenetic age acceleration and organ damage pairs that were significantly associated. RESULTS: After adjustment for sex, chronological age, and time between methylation and organ damage measures, higher IEAA was associated with higher urine albumin to creatinine ratio (UACR, p = 0.004), relative wall thickness (RWT, p = 0.022), and left ventricular mass index (LVMI, p = 0.007), and with lower ankle-brachial index (ABI, p = 0.014). EEAA was associated with higher LVMI (p = 0.005). Target organ damage associations for all but IEAA with LVMI remained significant after further adjustment for blood pressure and antihypertensive use (p < 0.05). Further adjustment for diabetes attenuated the IEAA associations with UACR and RWT, and adjustment for smoking attenuated the IEAA association with ABI. No effect modification by age or sex was observed. CONCLUSIONS: Measures of epigenetic age acceleration may help to better characterize the functional mechanisms underlying organ damage from cellular aging and/or hypertension. These measures may act as subclinical biomarkers for damage to the kidney, heart, and peripheral vasculature; however more research is needed to determine whether these relationships remain independent of lifestyle factors and comorbidities.


Assuntos
Negro ou Afro-Americano/genética , Epigênese Genética , Hipertensão/patologia , Fatores Etários , Idoso , Índice Tornozelo-Braço , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Creatinina/urina , Metilação de DNA , Feminino , Taxa de Filtração Glomerular , Ventrículos do Coração/química , Humanos , Hipertensão/tratamento farmacológico , Leucócitos Mononucleares/metabolismo , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Albumina Sérica Humana/urina
17.
Artigo em Inglês | MEDLINE | ID: mdl-31466396

RESUMO

DNA methylation (DNAm) clocks are important biomarkers of cellular aging and are associated with a variety of age-related chronic diseases and all-cause mortality. Examining the relationship between education and lifestyle risk factors for age-related diseases and multiple DNAm clocks can increase the understanding of how risk factors contribute to aging at the cellular level. This study explored the association between education or lifestyle risk factors for age-related diseases and the acceleration of four DNAm clocks, including intrinsic (IEAA) and extrinsic epigenetic age acceleration (EEAA), PhenoAge acceleration (PhenoAA), and GrimAge acceleration (GrimAA) in the African American participants of the Genetic Epidemiology Network of Arteriopathy. We performed both cross-sectional and longitudinal analyses. In cross-sectional analyses, gender, education, BMI, smoking, and alcohol consumption were all independently associated with GrimAA, whereas only some of them were associated with other clocks. The effect of smoking and education on GrimAA varied by gender. Longitudinal analyses suggest that age and BMI continued to increase GrimAA, and that age and current smoking continued to increase PhenoAA after controlling DNAm clocks at baseline. In conclusion, education and common lifestyle risk factors were associated with multiple DNAm clocks. However, the association with each risk factor varied by clock, which suggests that different clocks may capture adverse effects from different environmental stimuli.


Assuntos
Negro ou Afro-Americano/genética , Metilação de DNA , Estilo de Vida , Adulto , Idoso , Estudos Transversais , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fumar/genética
18.
Epigenetics ; 14(4): 383-391, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30915882

RESUMO

INTRODUCTION: Cigarette smoking has been associated with adverse health outcomes for mothers and children and is a major contributor to heart disease. Although cigarette smoking is known to affect the epigenome, few studies have been done in African American populations. In this study, we investigated the association between cigarette smoking and DNA methylation (DNAm) among African Americans from the Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure Study (InterGEN), and the Genetic Epidemiology Network of Arteriopathy (GENOA). METHODS: The InterGEN study aims to examine the effects of genetic and psychological factors on blood pressure among African American women and their children. Current cigarette smoking was assessed at baseline. DNAm of saliva was assessed using the 850K EPIC Illumina BeadChip for Epigenome-Wide Association analyses. A replication study was conducted among 1100 participants in the GENOA study using the same BeadChip. RESULTS: After controlling for age, body mass index, population structure and cell composition, 26 epigenome-wide significant sites (FDR q < 0.05) were identified, including the AHRR and PHF14 genes associated with atherosclerosis and lung disease, respectively. Six novel CpG sites were discovered in the InterGEN sample and replicated in the GENOA sample. Genes mapped include RARA, FSIP1, ALPP, PIK3R5, KIAA0087, and MGAT3, which were largely associated with cancer development. CONCLUSION: We observed significant epigenetic associations between smoking and disease-associated genes (e.g., cardiovascular disease, lung cancer). Six novel CpG sites were identified and replicated across saliva and blood samples.


Assuntos
Negro ou Afro-Americano/genética , Doenças Cardiovasculares/genética , Fumar Cigarros/genética , Metilação de DNA , Loci Gênicos , Neoplasias Pulmonares/genética , Adulto , Criança , Pré-Escolar , Epigênese Genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino
19.
Healthcare (Basel) ; 6(3)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081448

RESUMO

The United States Precision Medicine Initiative (PMI) was announced by then President Barack Obama in January 2015. It is a national effort designed to take into account genetic, environmental, and lifestyle differences in the development of individually tailored forms of treatment and prevention. This goal was implemented in March 2015 with the formation of an advisory committee working group to provide a framework for the proposed national research cohort of one million or more participants. The working group further held a public workshop on participant engagement and health equity, focusing on the design of an inclusive cohort, building public trust, and identifying active participant engagement features for the national cohort. Precision techniques offer medical and public health practitioners the opportunity to personally tailor preventive and therapeutic regimens based on informatics applied to large volume genotypic and phenotypic data. The PMI's (All of Us Research Program's) medical and public health promise, its balanced attention to technical and ethical issues, and its nuanced advisory structure made it a natural choice for inclusion in the University of Michigan course "Issues in Public Health Genetics" (HMP 517), offered each fall by the University's School of Public Health. In 2015, the instructors included the PMI as the recurrent case study introduced at the beginning and referred to throughout the course, and as a class exercise allowing students to translate issues into policy. In 2016, an entire class session was devoted to precision medicine and precision public health. In this article, we examine the dialogues that transpired in these three course components, evaluate session impact on student ability to formulate PMI policy, and share our vision for next-generation courses dealing with precision health. Methodology: Class materials (class notes, oral exercise transcripts, class exercise written hand-ins) from the three course components were inspected and analyzed for issues and policy content. The purpose of the analysis was to assess the extent to which course components have enabled our students to formulate policy in the precision public health area. Analysis of student comments responding to questions posed during the initial case study comprised the initial or "pre-" categories. Analysis of student responses to the class exercise assignment, which included the same set of questions, formed the "post-" categories. Categories were validated by cross-comparison among the three authors, and inspected for frequency with which they appeared in student responses. Frequencies steered the selection of illustrative quotations, revealing the extent to which students were able to convert issue areas into actual policies. Lecture content and student comments in the precision health didactic session were inspected for degree to which they reinforced and extended the derived categories. Results: The case study inspection yielded four overarching categories: (1) assurance (access, equity, disparities); (2) participation (involvement, representativeness); (3) ethics (consent, privacy, benefit sharing); and (4) treatment of people (stigmatization, discrimination). Class exercise inspection and analysis yielded three additional categories: (5) financial; (6) educational; and (7) trust-building. The first three categories exceeded the others in terms of number of student mentions (8⁻14 vs. 4⁻6 mentions). Three other categories were considered and excluded because of infrequent mention. Students suggested several means of trust-building, including PMI personnel working with community leaders, stakeholder consultation, networking, and use of social media. Student representatives prioritized participant and research institution access to PMI information over commercial access. Multiple schemes were proposed for participant consent and return of results. Both pricing policy and Medicaid coverage were touched on. During the didactic session, students commented on the importance of provider training in precision health. Course evaluation highlighted the need for clarity on the organizations involved in the PMI, and leaving time for student-student interaction. Conclusions: While some student responses during the exercise were terse, an evolution was detectable over the three course components in student ability to suggest tangible policies and steps for implementation. Students also gained surety in presenting policy positions to a peer audience. Students came up with some very creative suggestions, such as use of an electronic platform to assure participant involvement in the disposition of their biological sample and personal health information, and alternate examples of ways to manage large volumes of data. An examination of socio-ethical issues and policies can strengthen student understanding of the directions the Precision Medicine Initiative is taking, and aid in training for the application of more varied precision medicine and public health techniques, such as tier 1 genetic testing and whole genome and exome sequencing. Future course development may reflect additional features of the ongoing All of Us Research Program, and further articulate precision public health approaches applying to populations as opposed to single individuals.

20.
Kidney Int Rep ; 2(6): 1111-1121, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29270519

RESUMO

INTRODUCTION: Urine pH is critical for net acid and solute excretion, but the genetic factors that contribute to its regulation are incompletely understood. METHODS: We tested the association of single nucleotide polymorphisms (SNPs) from 16 genes related to ammonia (NH3) metabolism (15 biological candidates selected a priori, 1 selected from a previous genome-wide association study analysis) to that of 24-hour urine pH in 2493 individuals of European descent across 2 different cohorts using linear regression, adjusting for age, sex, and body mass index. RESULTS: Of 2871 total SNPs in these genes, 13 SNPs in ATP6V0A4 (a4 subunit of hydrogen- adenosine triphosphatase), SLC9A3 (sodium/hydrogen exchanger, isoform 3), and RHCG (Rhesus C glycoprotein), and 12 SNPs from insulin-like growth factor binding protein 7 (IGFBP7) had a meta-analysis P value <0.01 in the joint analysis plus a consistent direction of effect and at a least suggestive association (P < 0.1) in both cohorts. The maximal effect size (in pH units) for each additional minor allele of the identified SNPs was -0.13 for IGFBP7, -0.08 for ATP6V0A4, 0.06 for RHCG, and -0.06 for SLC9A3; SNP rs34447434 in IGFBP7 had the lowest meta-analysis P value (P = 7.1 × 10-8). After adjusting for net alkali absorption, urine pH remained suggestively associated with multiple SNPs in IGFBP, 1 SNP in ATP6V0A4, and a new SNP in GLS (phosphate-dependent glutaminase). DISCUSSION: Overall, these findings suggest that variants in common genes involved in ammonia metabolism may substantively contribute to basal urine pH regulation. These variations might influence the likelihood of developing disease conditions associated with altered urine pH, such as uric acid or calcium phosphate kidney stones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA