Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 83(1): 268-75, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368113

RESUMO

Decades of success with live adenovirus vaccines suggest that replication-competent recombinant adenoviruses (rAds) could serve as effective vectors for immunization against other pathogens. To explore the potential of a live rAd vaccine against malaria, we prepared a viable adenovirus 5 (Ad5) recombinant that displays a B-cell epitope from the circumsporozoite protein (CSP) of Plasmodium falciparum on the virion surface. The recombinant induced P. falciparum sporozoite-neutralizing antibodies in mice. Human adenoviruses do not replicate in mice. Therefore, to examine immunogenicity in a system in which, as in humans, the recombinant replicates, we constructed a similar recombinant in an adenovirus mutant that replicates in monkey cells and immunized four Aotus nancymaae monkeys. The recombinant replicated in the monkeys after intratracheal instillation, the first demonstration of replication of human adenoviruses in New World monkeys. Immunization elicited antibodies both to the Plasmodium epitope and the Ad5 vector. Antibodies from all four monkeys recognized CSP on intact parasites, and plasma from one monkey neutralized sporozoites in vitro and conferred partial protection against P. falciparum sporozoite infection after passive transfer to mice. Prior enteric inoculation of two animals with antigenically wild-type adenovirus primed a response to the subsequent intratracheal inoculation, suggesting a route to optimizing performance. A vaccine is not yet available against P. falciparum, which induces the deadliest form of malaria and kills approximately one million children each year. The live capsid display recombinant described here may constitute an early step in a critically needed novel approach to malaria immunization.


Assuntos
Adenoviridae/genética , Anticorpos Antiprotozoários/sangue , Portadores de Fármacos , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Neutralizantes/sangue , Aotidae , Técnicas de Visualização da Superfície Celular , Feminino , Vetores Genéticos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Masculino , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
2.
J Virol ; 85(9): 4135-42, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21345950

RESUMO

Adenovirus has a linear, double-stranded DNA genome that is perceived by the cellular Mre11-Rad50-Nbs1 (MRN) DNA repair complex as a double-strand break. If unabated, MRN elicits a double-strand break repair response that blocks viral DNA replication and ligates the viral genomes into concatemers. There are two sets of early viral proteins that inhibit the MRN complex. The E1B-55K/E4-ORF6 complex recruits an E3 ubiquitin ligase and targets MRN proteins for proteasome-dependent degradation. The E4-ORF3 protein inhibits MRN through sequestration. The mechanism that prevents MRN recognition of the viral genome prior to the expression of these early proteins was previously unknown. Here we show a temporal correlation between the loss of viral core protein VII from the adenovirus genome and a gain of checkpoint signaling due to the double-strand break repair response. While checkpoint signaling corresponds to the recognition of the viral genome, core protein VII binding to and checkpoint signaling at viral genomes are largely mutually exclusive. Transcription is known to release protein VII from the genome, and the inhibition of transcription shows a decrease in checkpoint signaling. Finally, we show that the nuclease activity of Mre11 is dispensable for the inhibition of viral DNA replication during a DNA damage response. These results support a model involving the protection of the incoming viral genome from checkpoint signaling by core protein VII and suggest that the induction of an MRN-dependent DNA damage response may inhibit adenovirus replication by physically masking the origins of DNA replication rather than altering their integrity.


Assuntos
Adenoviridae/patogenicidade , Enzimas Reparadoras do DNA/antagonistas & inibidores , DNA Viral/metabolismo , Interações Hospedeiro-Patógeno , Proteínas do Core Viral/metabolismo , Internalização do Vírus , Replicação Viral , Hidrolases Anidrido Ácido , Adenoviridae/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular , Dano ao DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/antagonistas & inibidores
3.
Vaccine ; 29(8): 1683-9, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21199707

RESUMO

Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice. Serum obtained from immunized mice recognized both recombinant PfCSP protein and P. falciparum sporozoites, and neutralized P. falciparum sporozoites in vitro. Replicating adenovirus vaccines have provided economical protection against adenovirus disease for over three decades. The recombinants described here may provide a path to an affordable malaria vaccine in the developing world.


Assuntos
Adenoviridae/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Protozoários/imunologia , Animais , Anopheles/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/sangue , Proteínas do Capsídeo/imunologia , Epitopos de Linfócito B/imunologia , Feminino , Células Hep G2 , Humanos , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Plasmodium falciparum/imunologia , Proteínas Recombinantes/imunologia
4.
J Virol ; 83(9): 4565-73, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19244322

RESUMO

Adenovirus infection induces a cellular DNA damage response that can inhibit viral DNA replication and ligate viral genomes into concatemers. It is not clear if the input virus is sufficient to trigger this response or if viral DNA replication is required. Adenovirus has evolved two mechanisms that target the Mre11-Rad50-Nbs1 (MRN) complex to inhibit the DNA damage response. These include E4-ORF3-dependent relocalization of MRN proteins and E4-ORF6/E1B-55K-dependent degradation of MRN components. The literature suggests that degradation of the MRN complex due to E4-ORF6/E1B-55K does not occur until after viral DNA replication has begun. We show that, by the time viral DNA accumulates, the MRN complex is inactivated by either of the E4-induced mechanisms and that, with E4-ORF6/E1B-55K, this inactivation is due to MRN degradation. Our data are consistent with the conclusion that input viral DNA is sufficient to induce the DNA damage response. Further, we demonstrate that when the DNA damage response is active in E4 mutant virus infections, the covalently attached terminal protein is not cleaved from viral DNAs, and the viral origins of replication are not detectably degraded at a time corresponding to the onset of viral replication. The sequences of concatemeric junctions of viral DNAs were determined, which supports the conclusion that nonhomologous end joining mediates viral DNA ligation. Large deletions were found at these junctions, demonstrating nucleolytic procession of the viral DNA; however, the lack of terminal protein cleavage and terminus degradation at earlier times shows that viral genome deletion and concatenation are late effects.


Assuntos
Adenoviridae/fisiologia , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Hidrolases Anidrido Ácido , Proteínas E1B de Adenovirus/genética , Proteínas E1B de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/genética , Proteínas E4 de Adenovirus/metabolismo , Linhagem Celular Tumoral , Replicação do DNA , DNA Viral/genética , Deleção de Genes , Humanos , Proteína Homóloga a MRE11 , Ligação Proteica , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA