Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 1): 129475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262830

RESUMO

`The objective of current research was to encapsulate citrus bergamia essential oil (CBEO) in nanocomplexes composed of sodium caseinate (SC) and peach gum polysaccharide (PG) in various ratios (SC/PG-1:0, 0:1, 1:1, 1:3, and 3:1). The nanocomplexes formed by the combination of SC and PG in a ratio of 1:3 exhibited a zeta potential of -21.36 mV and a PDI of 0.25. The CBEO-loaded SC/PG (1:3) nanocomplexes revealed the maximum encapsulation efficiency (82.47 %) and loading capacity (1.85 %). FTIR also confirmed the secondary structure variations in response to different ratios of CBEO-loaded SC/PG nanocomplexes. In addition, the XRD and fluorescence spectroscopy analysis also revealed structural changes among CBEO nanocomplexes. The thermal capability of CBEO-loaded SC/PG (1:3) nanocomplexes via TGA showed the minimum weight loss among other complexes. SEM and CLSM analysis demonstrated the uniform distribution and spherical morphology of CBEO-loaded SC/PG (1:3) nanocomplexes. The antioxidant activity of free CBEO was significantly improved in CBEO-loaded nanocomplexes. Likewise, the inhibitory activity of CBEO-loaded nanocomplexes exhibited significantly higher antibacterial action against S. aureus and E. coli. The aforementioned perspective suggests that SC/PG nanocomplexes have potent potential to serve as highly effective nanocarriers with a broad spectrum of uses in the pharmaceutical and food sectors.


Assuntos
Citrus , Óleos Voláteis , Prunus persica , Caseínas/química , Escherichia coli , Staphylococcus aureus , Óleos Voláteis/farmacologia , Óleos Voláteis/química
2.
Adv Colloid Interface Sci ; 307: 102744, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35878506

RESUMO

Alginate-based nanocarriers are propitious vehicles used for the delivery of bioactive compounds (bioactives). In this area, calcium alginate and sodium alginate are the most promising wall materials because they are nontoxic, comparatively cheap, simple in production, biocompatible and biodegradable. In this review, we have highlighted different alginate-based nanocarriers such as nanoparticles, nanofibers, nanoemulsions, nanocomplexes, and nanohydrogels; also entrapment of different bioactives within alginate nanocarriers and their bioavailability in the gastric environment has been comprehensively discussed. Being biopolymers, alginates can be exploited as emulsifiers/ encapsulants for entrapment and delivery of different bioactives such as vitamins, minerals, essential fatty acids, peptides, essential oils, bioactive oils, polyphenols and carotenoids. Furthermore, the use of alginate-based nanocarriers in combination with other polysaccharides/ emulsifiers was recognized as the most effective and favorable approach for the protection, delivery and sustained release of bioactives.


Assuntos
Alginatos , Nanopartículas , Disponibilidade Biológica , Preparações de Ação Retardada , Emulsificantes
3.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34469878

RESUMO

Borage seed oil (BSO), peppermint oil (PO) and lycopene (LC) have accomplished a lot of interest due to their therapeutic benefits in the food and pharmaceutical sectors. However, their employment in functional food products and dietary supplements is still precluded by their high susceptibility to oxidation. Thus, the encapsulation can be applied as a promising strategy to overcome these limits. In the present study, doubly layered water/oil/water (W/O/W) nanoemulsions were equipped using purity gum ultra (PGU), soy protein isolate (SPI), pectin (PC), whey protein isolate (WPI) and WPI-PC and SPI-PC complexes, and their physico-chemical properties were investigated. Our aim was to investigate the influence of natural biopolymers as stabilizers on the physicochemical properties of nanoemulsified BSO, PO and lycopene thru W/O/W emulsions. The droplet size of the fabricated emulsions coated with PGU, WPI, SPI, PC, WPI-PC, and SPI-PC was 156.2, 265.9, 254.7, 168.5, 559.5 and 656.1 nm, correspondingly. The encapsulation efficiency of the entrapped bioactives for powders embedded by PGU, WPI, SPI, PC, WPI-PC, and SPI-PC was 95.21%, 94.67%, 97.24%, 92.19%, 90.07% and 92.34%, respectively. In addition, peroxide and p-anisidine values were used to measure the antioxidant potential of the entrapped bioactive compounds during storage, which was compared to synthetic antioxidant and bare natural antioxidant. The collected findings revealed that oxidation occurred in oils encompassing entrapped bioactive compounds, but at a lower extent than for non-encapsulated bioactives. In summary, the findings obtained from current research prove that the nanoencapsulation of BSO surrounded by innermost aqueous stage of W/O/W improved its stability as well as allowed a controlled release of the entrapped bioactives. Thus, the obtained BSO-PO-based systems could be successfully used for further fortification of food-stuffs.

4.
Colloids Surf B Biointerfaces ; 199: 111481, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33360079

RESUMO

Tuna fish oil (TFO), is a rich source of omega-3 fatty acids comprising particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), which are essential for the human's health enhancement. However, their foremost problems are poor solubility, low bioavailability, and easy oxidization, which limit their wide range of applications in food and pharmaceutical products. The aim of this research is to develop TFO nanoemulsions encapsulating curcumin (CUR) and resveratrol (RES) as co-antioxidants, stabilized with different concentrations of two modified starches including Purity Gum 2000 (PG) and Purity Gum Ultra (PGU). The effect of diverse quantities of modified starches on droplet size, droplet charges, viscosity, and oxidative stability of produced nanoemulsions was assessed at different storage temperatures (4, 25, and 40 °C). Furthermore, to assess the antioxidant activity and capacity of loaded nanoemulsions, DPPH, and ABTS assays were used, respectively. Among various samples, PGU2.5 and PG9 emulsified by PGU and PG2000 had showed the premium results of stability during storage at all temperatures over other formulations. Even at 40 °C, 199.10 µL/mL of PGU2.5 and 258.59 µL/mL of PG9 were required to attain the level of DPPH IC50, which were the lowest concentration as compare to other nanoemulsions. Taken together, it was accredited that co-encapsulation of CUR and RES inside the TFO nanoemulsion-based delivery systems can be efficient for the production of functional foods.


Assuntos
Curcumina , Emulsões , Óleos de Peixe , Humanos , Estresse Oxidativo , Resveratrol
5.
Int J Biol Macromol ; 153: 697-707, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32112831

RESUMO

Borage seed oil (BSO) is one of the richest sources of γ-linolenic acid and linoleic acid, which are considered to retain plenty of health promoting benefits. However, its application in functional foods and dietary supplements remains limited owing to its superior vulnerability to oxidation. To solve this problem, ultrasound-assisted BSO-loaded nanoemulsions were prepared with modified starch incorporating different concentrations of peppermint oil (PO), as a natural antioxidant. The influence of different PO levels on the mean droplet size, rheology attributes, and oxidative stability of nanoemulsions stored at various temperatures (4, 25, and 40 °C) during 30 days storage was analyzed. In addition, DPPH and ABTS assays were used to determine the antioxidant activity and antioxidant capacity of BSO-loaded nanoemulsions, respectively. The optimized formulation (NE3; 5:5% v/v PO: BSO) exhibited a slight change in droplet size and oxidative stability at all temperatures during storage compared to other formulations. At a concentration of 328.08 µL/mL, formulation NE3 presented the minimum DPPH IC50 at 40 °C, which was lower than other formulations. The findings of this study revealed that the maximum retained antioxidant capacity (99.42 µg Trolox/mL) was related to NE3 comprising (5:5% v/v PO: BSO) stored at 40 °C for 30 days; which could be accredited to the role of PO as a natural antioxidant in order to improve the oxidative stability of nanoemulsion delivery system. Taken together, co-encapsulation of BSO and PO within nanoemulsions provides novel insights regarding the development of functional foods, dietary supplements and beverages.


Assuntos
Antioxidantes/química , Óleos de Plantas/química , Amido/química , Ácido gama-Linolênico/química , Emulsões , Mentha piperita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA