Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(25)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38461552

RESUMO

Bi-functional materials provide an opportunity for the development of high-performance devices. Up till now, bi-functional performance of NiCo2O4@SnS2nanosheets is rarely investigated. In this work, NiCo2O4@SnS2nanosheets were synthesized on carbon cloth by utilizing a simple hydrothermal technique. The developed electrode (NiCo2O4@SnS2/CC) was investigated for the detection of L-Cysteine and supercapacitors applications. As a non-enzymatic sensor, the electrode proved to be highly sensitive for the detection of L-cysteine. The electrode exhibits a reproducible sensitivity of 4645.82µA mM-1cm-2in a wide linear range from 0.5 to 5 mM with a low limit of detection (0.005µM). Moreover, the electrode shows an excellent selectivity and long-time stability. The high specific surface area, enhanced kinetics, good synergy and distinct architecture of NiCo2O4@SnS2nanosheets produce a large number of active sites with substantial energy storage potential. As a supercapacitor, the electrode exhibits improve capacitance of 655.7 F g-1at a current density of 2 A g-1as compare to NiCo2O4/CC (560 F g-1). Moreover, the electrode achieves 95.3% of its preliminary capacitance after 10 000 cycles at 2 A g-1. Our results show that NiCo2O4@SnS2/CC nanosheets possess binary features could be attractive electrode material for the development of non-enzymatic biosensors as well as supercapacitors.

2.
Nanomedicine (Lond) ; 17(25): 1909-1927, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36695214

RESUMO

Aim: This study aimed to synthesize folate-conjugated sorafenib-loaded (FCSL) liposomes for theranostic application using ultrasound (US). Materials & methods: US parameter optimization, in vitro release, anticancer effect, in vivo biodistribution, optical imaging and biocompatibility of liposomes were studied. Results: With 84% in vitro release after 4 min of US exposure at 3 MHz (1.2 mechanical index), FCSL liposomes showed lower IC50 (8.70 µM) versus sorafenib (9.34 µM) against HepG2 cells. In vivo biodistribution of FCSL liposomes versus sorafenib after 9 mg/kg injection in the liver (8.63 vs 0.55) > intestine (8.45 vs 1.07) > stomach (5.62 vs 0.57) > kidney (5.46 vs 0.91) showed longer circulation time in plasma and can be tracked in mice. Conclusion: A threefold higher drug concentration in the liver in US-exposed mice makes this a successful nanotheranostic approach.


Sorafenib is the first-line treatment for liver cancer, but it has low absorption due to its poor water solubility and unavoidable side effects. Liposomes can encapsulate a wide range of diagnostic and therapeutic agents. Ultrasound (US) application can lead to enhanced penetration and release at the site of action. In this study, folate-ornamented sorafenib-loaded liposomes were evaluated for safe intravenous administration, anticancer effect, biodistribution and bioavailability in mice after US application. The results of this study will help researchers understand how US and optical imaging show that coumarin-labeled liposomes can act as theranostic agents with dual properties of therapeutics and imaging. US and folate-conjugated sorafenib-loaded theranostic liposomes can be utilized as a promising approach to cancer treatment.


Assuntos
Lipossomos , Nanomedicina Teranóstica , Animais , Camundongos , Sorafenibe , Distribuição Tecidual , Linhagem Celular Tumoral , Cumarínicos
3.
Nanotechnology ; 31(50): 505501, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33006325

RESUMO

We report a non-enzymatic facile method for the detection of L-cysteine (L-Cyst) using free-standing TiO2 nanotube (TNT) array-modified glassy carbon electrodes (GCEs). Self-organized, highly ordered, and vertically oriented TNT arrays were fabricated by anodization of titanium sheets in ethylene glycol-based electrolyte. Detailed electrochemical measurements were performed and it was found that modified GCE exhibited high current compared to the pristine counterpart. The high current of the modified electrode was attributed to the high surface area and enhanced electrocatalytic activities of the TNTs toward the L-Cyst oxidation. Under the optimum conditions, the modified electrode exhibited a high sensitivity of ∼1.68 µA mM-1 cm-2 with a low detection limit of ∼0.1 mM. The fabricated electrode was found to be sensitive to pH and electrolyte temperature. The real sample analysis of the proposed method showed a decent recovery toward L-Cyst addition in human blood serum. Furthermore, the density-funcational theory (DFT) analysis revealed that TNTs have greater affinity toward L-Cyst, having stronger binding distance after its adsorption. The higher negative E ads values suggested a stable and chemisorption nature. The density of states results show that the E gap of TNTs is significantly reduced after L-Cyst adsorption. The modified GCE showed excellent selectivity, enhanced stability, and fast response, which make TNTs a promising candidate for the enzyme-free detection of other biological analytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA