Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(7): 939-951, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507812

RESUMO

MshA is a GT-B glycosyltransferase catalyzing the first step in the biosynthesis of mycothiol. While many GT-B enzymes undergo an open-to-closed transition, MshA is unique because its 97° rotation is beyond the usual range of 10-25°. Molecular dynamics (MD) simulations were carried out for MshA in both ligand bound and unbound states to investigate the effect of ligand binding on localized protein dynamics and its conformational free energy landscape. Simulations showed that both the unliganded "opened" and liganded "closed" forms of the enzyme sample a wide degree of dihedral angles and interdomain distances with relatively low overlapping populations. Calculation of the free energy surface using replica exchange MD for the apo "opened" and an artificial generated apo "closed" structure revealed overlaps in the geometries sampled, allowing calculation of a barrier of 2 kcal/mol for the open-to-closed transition in the absence of ligands. MD simulations of fully liganded MshA revealed a smaller sampling of the dihedral angles. The localized protein fluctuation changes suggest that UDP-GlcNAc binding activates the motions of loops in the 1-l-myo-inositol-1-phosphate (I1P)-binding site despite little change in the interactions with UDP-GlcNAc. Circular dichroism, intrinsic fluorescence spectroscopy, and mutagenesis studies were used to confirm the ligand-induced structural changes in MshA. The results support a proposed mechanism where UDP-GlcNAc binds with rigid interactions to the C-terminal domain of MshA and activates flexible loops in the N-terminal domain for binding and positioning of I1P. This model can be used for future structure-based drug development of inhibitors of the mycothiol biosynthetic pathway.


Assuntos
Corynebacterium glutamicum , Cisteína , Glicopeptídeos , Glicosiltransferases , Inositol , Glicosiltransferases/metabolismo , Ligantes , Fosfatos de Inositol/metabolismo , Difosfato de Uridina/metabolismo , Conformação Proteica , Simulação de Dinâmica Molecular
2.
Am J Nucl Med Mol Imaging ; 11(1): 27-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688453

RESUMO

BACKGROUND AND PURPOSE: 68Ga DOTATATE PET/CT protocols are similar to 18F FDG protocols despite differences in physical properties, biodistribution, and tumor uptake. The purpose of this study is to evaluate the impact of scan time (counts), and target activity on signal-to-noise ratio (SNR) in various sized targets, or lesions. To evaluate this, phantom experiments and analysis of clinical 68Ga DOTATATE PET/CT studies were performed. MATERIALS AND METHODS: 68Ga was first compared to 18F in phantom studies to evaluate recovery coefficients and SNR. 68Ga phantom studies were also acquired in list mode, and at varying target activities to evaluate the effects of acquisition time and high target concentrations on SNR in clinically relevant small (8 mm) and larger targets (≥ 12 mm). Clinical studies (n = 50) were analyzed to determine if phantom target concentrations and SNR are present in clinical 68Ga DOTATATE studies at similarly very high tumor activity concentrations (n = 159). RESULTS: In phantoms, recovery coefficient and SUVmax for 68Ga were ~87% of 18F. SNR for 68Ga was ~65% of 18F. For the 68Ga small target (8 mm) at standard T/B = 2.4, increasing scan time from 5 to 15 minutes increased SNR from < 1 to 1.6, and did not result in target identification. Increasing T/B from 2.4 to 10.9, however, dramatically increased SNR from < 1 to 22.3. Increased T/B resulted in clear visibility of the 8 mm target, even for 1-minute scans. In patients, high hepatic tumor SUVmax (27.3±29.6), resulted in high SNR (12.5±9.8). For extrahepatic tumors, high SUVmax (41.6±42.8), resulted in high SNR (43.8±49.9). CONCLUSION: Very high target or T/B, even in small targets, can offset the physical limitations of 68Ga. High target uptake and high T/B are primary factors influencing small lesion detectability.

3.
J Nucl Med Technol ; 41(2): 99-104, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23539762

RESUMO

UNLABELLED: Our objective was to rigorously compare pinhole and parallel-hole collimation in an intrapatient, intrastudy design in 2 parathyroid imaging protocols: the first was dual-phase (99m)Tc-sestamibi imaging, and the second was dual-phase (99m)Tc-sestamibi plus dual-tracer ((99m)Tc-sestamibi and (123)I) simultaneous-acquisition subtraction imaging. METHODS: Thirty-three patients with 37 surgically proven nonectopic parathyroid adenomas were evaluated. Anterior pinhole and parallel-hole images of the neck were available for (99m)Tc-sestamibi at 15 min and 3 h, and for simultaneously acquired (99m)Tc-sestamibi and (123)I subtraction at 15 min, all from a single study. The images were modified so that all had a square border and so that the thyroid filled approximately three quarters of the image. The images were evaluated by 2 experienced nuclear medicine physicians who did not know the surgical results or whether the images were acquired with pinhole or parallel-hole collimation. The observers indicated the location of any identified adenoma and graded the certainty of diagnosis on a 3-point scale. RESULTS: The localization success rate for the 2 observers combined for the single-tracer dual-phase images was 66.2% with pinhole collimation and 43.2% with parallel-hole collimation (P < 0.0001). The localization success rate with the addition of the dual-tracer simultaneous-acquisition subtraction image was 83.8% with pinhole collimation and 62.2% with parallel-hole collimation (P = 0.0018). In addition, the degree of certainty of localization was greater with pinhole collimation with both imaging protocols (P < 0.001 in both cases). CONCLUSION: In the anterior projection, pinhole collimation is superior to parallel-hole collimation for parathyroid imaging with either dual-phase (99m)Tc-sestamibi or dual-phase (99m)Tc-sestamibi plus dual-tracer ((99m)Tc-sestamibi and (123)I) simultaneous-acquisition subtraction.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Glândulas Paratireoides/diagnóstico por imagem , Cintilografia/métodos , Técnica de Subtração , Tecnécio Tc 99m Sestamibi , Adulto , Idoso , Feminino , Humanos , Radioisótopos do Iodo , Masculino , Pessoa de Meia-Idade , Glândulas Paratireoides/cirurgia , Traçadores Radioativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA