Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(9): 3698-3708, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730841

RESUMO

Although there is convergent evidence for blood-brain barrier (BBB) dysfunction and peripheral inflammation in schizophrenia (SZ) and bipolar disorder (BD), it is unknown whether BBB deficits are intrinsic to brain microvascular endothelial cells (BMECs) or arise via effects of peripheral inflammatory cytokines. We examined BMEC function using stem cell-based models to identify cellular and molecular deficits associated with BBB dysfunction in SZ and BD. Induced pluripotent stem cells (iPSCs) from 4 SZ, 4 psychotic BD and 4 healthy control (HC) subjects were differentiated into BMEC-"like" cells. Gene expression and protein levels of tight junction proteins were assessed. Transendothelial electrical resistance (TEER) and permeability were assayed to evaluate BBB function. Cytokine levels were measured from conditioned media. BMECs derived from human iPSCs in SZ and BD did not show differences in BBB integrity or permeability compared to HC BMECs. Outlier analysis using TEER revealed a BBB-deficit (n = 3) and non-deficit (n = 5) group in SZ and BD lines. Stratification based on BBB function in SZ and BD patients identified a BBB-deficit subtype with reduced barrier function, tendency for increased permeability to smaller molecules, and decreased claudin-5 (CLDN5) levels. BMECs from the BBB-deficit group show increased matrix metallopeptidase 1 (MMP1) activity, which correlated with reduced CLDN5 and worse BBB function, and was improved by tumor necrosis factor α (TNFα) and MMP1 inhibition. These results show potential deficits in BMEC-like cells in psychotic disorders that result in BBB disruption and further identify TNFα and MMP1 as promising targets for ameliorating BBB deficits.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos Psicóticos , Humanos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/farmacologia , Células Cultivadas , Encéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos Psicóticos/metabolismo
2.
Brain Behav Immun ; 103: 97-108, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429607

RESUMO

Translational evidence suggests that cytokines involved in maternal immune activation (MIA), such as interleukin-6 (IL-6) and interferon-γ (IFN-γ), can cross the placenta, injure fetal brain, and predispose to neuropsychiatric disorders. To elaborate developmental neuronal sequelae of MIA, we differentiated human pluripotent stem cells to cortical neurons over a two-month period, exposing them to IL-6 or IFN-γ. IL-6 impacted expression of genes regulating extracellular matrix, actin cytoskeleton and TGF-ß signaling while IFN-γ impacted genes regulating antigen processing, major histocompatibility complex and endoplasmic reticulum biology. IL-6, but not IFN-γ, altered mitochondrial respiration while IFN-γ, but not IL-6, induced reduction in dendritic spine density. Pre-treatment with folic acid, which has known neuroprotective and anti-inflammatory properties, ameliorated IL-6 effects on mitochondrial respiration and IFN-γ effects on dendritic spine density. These findings suggest distinct mechanisms for how fetal IL-6 and IFN-γ exposure influence risk for neuropsychiatric disorders, and how folic acid can mitigate such risk.


Assuntos
Interferon gama , Interleucina-6 , Neurônios , Diferenciação Celular , Citocinas , Ácido Fólico , Humanos , Interferon gama/farmacologia , Interleucina-6/farmacologia , Neurônios/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia
3.
JAMA Psychiatry ; 77(7): 745-754, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186681

RESUMO

Importance: Three-dimensional cerebral organoids generated from patient-derived induced pluripotent stem cells (iPSCs) may be used to interrogate cellular-molecular underpinnings of schizophrenia. Objective: To determine transcriptomic profiles and functional characteristics of cerebral organoids from patients with schizophrenia using gene expression studies, complemented with investigations of mitochondrial function through measurement of real-time oxygen consumption rate, and functional studies of neuronal firing with microelectrode arrays. Design, Setting, and Participants: This case-control study was conducted at Massachusetts General Hospital between 2017 and 2019. Transcriptomic profiling of iPSC-derived cerebral organoids from 8 patients with schizophrenia and 8 healthy control individuals was undertaken to identify cellular pathways that are aberrant in schizophrenia. Induced pluripotent stem cells and cerebral organoids were generated from patients who had been diagnosed as having schizophrenia and from heathy control individuals. Main Outcomes and Measures: Transcriptomic analysis of iPSC-derived cerebral organoids from patients with schizophrenia show differences in expression of genes involved in synaptic biology and neurodevelopment and are enriched for genes implicated in schizophrenia genome-wide association studies (GWAS). Results: The study included iPSC lines generated from 11 male and 5 female white participants, with a mean age of 38.8 years. RNA sequencing data from iPSC-derived cerebral organoids in schizophrenia showed differential expression of genes involved in synapses, in nervous system development, and in antigen processing. The differentially expressed genes were enriched for genes implicated in schizophrenia, with 23% of GWAS genes showing differential expression in schizophrenia and control organoids: 10 GWAS genes were upregulated in schizophrenia organoids while 15 GWAS genes were downregulated. Analysis of the gene expression profiles suggested dysregulation of genes involved in mitochondrial function and those involved in modulation of excitatory and inhibitory pathways. Studies of mitochondrial respiration showed lower basal consumption rate, adenosine triphosphate production, proton leak, and nonmitochondrial oxygen consumption in schizophrenia cerebral organoids, without any differences in the extracellular acidification rate. Microelectrode array studies of cerebral organoids showed no differences in baseline electrical activity in schizophrenia but revealed a diminished response to stimulation and depolarization. Conclusions and Relevance: Investigations of patient-derived cerebral organoids in schizophrenia revealed gene expression patterns suggesting dysregulation of a number of pathways in schizophrenia, delineated differences in mitochondrial function, and showed deficits in response to stimulation and depolarization in schizophrenia.


Assuntos
Cérebro , Fenômenos Eletrofisiológicos , Perfilação da Expressão Gênica , Mitocôndrias/metabolismo , Organoides , Esquizofrenia/genética , Adulto , Estudos de Casos e Controles , Cérebro/metabolismo , Cérebro/fisiopatologia , Feminino , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Microeletrodos , Organoides/metabolismo , Organoides/fisiopatologia , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Análise de Sequência de RNA
4.
Transl Psychiatry ; 9(1): 321, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780643

RESUMO

Human postmortem studies suggest a major role for abnormalities in GABAergic interneurons in the prefrontal cortex in schizophrenia. Cortical interneurons differentiated from induced pluripotent stem cells (iPSCs) of schizophrenia subjects showed significantly lower levels of glutamate decarboxylase 67 (GAD67), replicating findings from multiple postmortem studies, as well as reduced levels of synaptic proteins gehpyrin and NLGN2. Co-cultures of the interneurons with excitatory cortical pyramidal neurons from schizophrenia iPSCs showed reduced synaptic puncta density and lower action potential frequency. NLGN2 overexpression in schizophrenia neurons rescued synaptic puncta deficits while NLGN2 knockdown in healthy neurons resulted in reduced synaptic puncta density. Schizophrenia interneurons also had significantly smaller nuclear area, suggesting an innate oxidative stressed state. The antioxidant N-acetylcysteine increased the nuclear area in schizophrenia interneurons, increased NLGN2 expression and rescued synaptic deficits. These results implicate specific deficiencies in the synaptic machinery in cortical interneurons as critical regulators of synaptic connections in schizophrenia and point to a nexus between oxidative stress and NLGN2 expression in mediating synaptic deficits in schizophrenia.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral , Células-Tronco Pluripotentes Induzidas , Interneurônios , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais , Esquizofrenia , Sinapses , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Humanos , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
5.
ACS Chem Biol ; 12(8): 2139-2148, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28628306

RESUMO

The AKT family of serine-threonine kinases functions downstream of phosphatidylinositol 3-kinase (PI3K) to transmit signals by direct phosphorylation of a number of targets, including the mammalian target of rapamycin (mTOR), glycogen synthase kinase 3ß (GSK3ß), and ß-catenin. AKT binds to phosphatidylinositol (3,4,5)-triphosphate (PIP3) generated by PI3K activation, which results in its membrane localization and subsequent activation through phosphorylation by phosphoinositide-dependent protein kinase 1 (PDK1). Together, the PI3K-AKT signaling pathway plays pivotal roles in many cellular systems, including in the central nervous system where it governs both neurodevelopment and neuroplasticity. Recently, lysine residues (Lys14 and Lys20) on AKT, located within its pleckstrin homology (PH) domain that binds to membrane-bound PIP3, have been found to be acetylated under certain cellular contexts in various cancer cell lines. These acetylation modifications are removed by the enzymatic action of the class III lysine deacetylases, SIRT1 and SIRT2, of the sirtuin family. The extent to which reversible acetylation regulates AKT function in other cell types remains poorly understood. We report here that AKT kinase activity is modulated by a class IIb lysine deacetylase, histone deacetylase 6 (HDAC6), in human neural progenitor cells (NPCs). We find that HDAC6 and AKT physically interact with each other in the neuronal cells, and in the presence of selective HDAC6 inhibition, AKT is acetylated at Lys163 and Lys377 located in the kinase domain, two novel sites distinct from the acetylation sites in the PH-domain modulated by the sirtuins. Measurement of the functional effect of HDAC6 inhibition on AKT revealed decreased binding to PIP3, a correlated decrease in AKT kinase activity, decreased phosphorylation of Ser552 on ß-catenin, and modulation of neuronal differentiation trajectories. Taken together, our studies implicate the deacetylase activity of HDAC6 as a novel regulator of AKT signaling and point to novel mechanisms for regulating AKT activity with small-molecule inhibitors of HDAC6 currently under clinical development.


Assuntos
Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/metabolismo , Lisina/metabolismo , Células-Tronco Neurais/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetilação , Animais , Diferenciação Celular , Ativação Enzimática , Humanos , Lisina/química , Camundongos , Estrutura Molecular , Células-Tronco Neurais/citologia , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
6.
Cell Rep ; 10(5): 755-770, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660025

RESUMO

Novel therapeutic approaches are urgently required for multiple myeloma (MM). We used a phenotypic screening approach using co-cultures of MM cells with bone marrow stromal cells to identify compounds that overcome stromal resistance. One such compound, BRD9876, displayed selectivity over normal hematopoietic progenitors and was discovered to be an unusual ATP non-competitive kinesin-5 (Eg5) inhibitor. A novel mutation caused resistance, suggesting a binding site distinct from known Eg5 inhibitors, and BRD9876 inhibited only microtubule-bound Eg5. Eg5 phosphorylation, which increases microtubule binding, uniquely enhanced BRD9876 activity. MM cells have greater phosphorylated Eg5 than hematopoietic cells, consistent with increased vulnerability specifically to BRD9876's mode of action. Thus, differences in Eg5-microtubule binding between malignant and normal blood cells may be exploited to treat multiple myeloma. Additional steps are required for further therapeutic development, but our results indicate that unbiased chemical biology approaches can identify therapeutic strategies unanticipated by prior knowledge of protein targets.

7.
J Neuropsychiatry Clin Neurosci ; 23(2): 223-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21677256

RESUMO

The authors report clinical features and treatment response in 25 patients with catatonia admitted to an inpatient psychiatric unit specializing in psychotic disorders. Electroconvulsive therapy, benzodiazepines, and clozapine had beneficial effects on catatonic features, whereas typical antipsychotics resulted in clinical worsening.


Assuntos
Catatonia/diagnóstico , Catatonia/terapia , Transtornos Psicóticos/complicações , Adolescente , Adulto , Antipsicóticos/uso terapêutico , Catatonia/tratamento farmacológico , Catatonia/psicologia , Eletroconvulsoterapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/psicologia , Estudos Retrospectivos , Resultado do Tratamento
8.
Chem Biol ; 17(11): 1177-82, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21095567

RESUMO

To identify new protein and pharmacological regulators of Wnt/ß-catenin signaling, we used a cell-based reporter assay to screen a collection of 1857 human-experienced compounds for their ability to enhance activation of the ß-catenin reporter by a low concentration of WNT3A. This identified 44 unique compounds, including the FDA-approved drug riluzole, which is presently in clinical trials for treating melanoma. We found that treating melanoma cells with riluzole in vitro enhances the ability of WNT3A to regulate gene expression, to promote pigmentation, and to decrease cell proliferation. Furthermore riluzole, like WNT3A, decreases metastases in a mouse melanoma model. Interestingly, siRNAs targeting the metabotropic glutamate receptor, GRM1, a reported indirect target of riluzole, enhance ß-catenin signaling. The unexpected regulation of ß-catenin signaling by both riluzole and GRM1 has implications for the future uses of this drug.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma Experimental/metabolismo , Riluzol/uso terapêutico , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Proliferação de Células , Regulação da Expressão Gênica , Genes Reporter , Melanoma Experimental/tratamento farmacológico , Camundongos , Interferência de RNA , RNA Interferente Pequeno , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais , Pigmentação da Pele , Proteína Wnt3 , Proteína Wnt3A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA