Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893655

RESUMO

The early detection of esophageal cancer presents a substantial difficulty, which contributes to its status as a primary cause of cancer-related fatalities. This study used You Only Look Once (YOLO) frameworks, specifically YOLOv5 and YOLOv8, to predict and detect early-stage EC by using a dataset sourced from the Division of Gastroenterology and Hepatology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital. The dataset comprised 2741 white-light images (WLI) and 2741 hyperspectral narrowband images (HSI-NBI). They were divided into 60% training, 20% validation, and 20% test sets to facilitate robust detection. The images were produced using a conversion method called the spectrum-aided vision enhancer (SAVE). This algorithm can transform a WLI into an NBI without requiring a spectrometer or spectral head. The main goal was to identify dysplasia and squamous cell carcinoma (SCC). The model's performance was evaluated using five essential metrics: precision, recall, F1-score, mAP, and the confusion matrix. The experimental results demonstrated that the HSI model exhibited improved learning capabilities for SCC characteristics compared with the original RGB images. Within the YOLO framework, YOLOv5 outperformed YOLOv8, indicating that YOLOv5's design possessed superior feature-learning skills. The YOLOv5 model, when used in conjunction with HSI-NBI, demonstrated the best performance. It achieved a precision rate of 85.1% (CI95: 83.2-87.0%, p < 0.01) in diagnosing SCC and an F1-score of 52.5% (CI95: 50.1-54.9%, p < 0.01) in detecting dysplasia. The results of these figures were much better than those of YOLOv8. YOLOv8 achieved a precision rate of 81.7% (CI95: 79.6-83.8%, p < 0.01) and an F1-score of 49.4% (CI95: 47.0-51.8%, p < 0.05). The YOLOv5 model with HSI demonstrated greater performance than other models in multiple scenarios. This difference was statistically significant, suggesting that the YOLOv5 model with HSI significantly improved detection capabilities.

2.
Biomed Opt Express ; 15(2): 753-771, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404333

RESUMO

This research aims to explore the potential application of this approach in the production of biosensor chips. The biosensor chip is utilized for the identification and examination of early-stage lung cancer cells. The findings of the optical microscope were corroborated by the field emission scanning electron microscopy, which provided further evidence that the growth of MoS2 is uniform and that there is minimal disruption in the electrode, hence minimizing the likelihood of an open circuit creation. Furthermore, the bilayer structure of the produced MoS2 has been validated through the utilization of Raman spectroscopy. A research investigation was undertaken to measure the photoelectric current generated by three various types of clinical samples containing lung cancer cells, specifically the CL1, NCI-H460, and NCI-H520 cell lines. The findings from the empirical analysis indicate that the coefficient of determination (R-Square) for the linear regression model was approximately 98%. Furthermore, the integration of a double-layer MoS2 film resulted in a significant improvement of 38% in the photocurrent, as observed in the device's performance.

3.
Cancers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339322

RESUMO

Esophageal carcinoma (EC) is a prominent contributor to cancer-related mortality since it lacks discernible features in its first phases. Multiple studies have shown that narrow-band imaging (NBI) has superior accuracy, sensitivity, and specificity in detecting EC compared to white light imaging (WLI). Thus, this study innovatively employs a color space linked to décor to transform WLIs into NBIs, offering a novel approach to enhance the detection capabilities of EC in its early stages. In this study a total of 3415 WLI along with the corresponding 3415 simulated NBI images were used for analysis combined with the YOLOv5 algorithm to train the WLI images and the NBI images individually showcasing the adaptability of advanced object detection techniques in the context of medical image analysis. The evaluation of the model's performance was based on the produced confusion matrix and five key metrics: precision, recall, specificity, accuracy, and F1-score of the trained model. The model underwent training to accurately identify three specific manifestations of EC, namely dysplasia, squamous cell carcinoma (SCC), and polyps demonstrates a nuanced and targeted analysis, addressing diverse aspects of EC pathology for a more comprehensive understanding. The NBI model effectively enhanced both its recall and accuracy rates in detecting dysplasia cancer, a pre-cancerous stage that might improve the overall five-year survival rate. Conversely, the SCC category decreased its accuracy and recall rate, although the NBI and WLI models performed similarly in recognizing the polyp. The NBI model demonstrated an accuracy of 0.60, 0.81, and 0.66 in the dysplasia, SCC, and polyp categories, respectively. Additionally, it attained a recall rate of 0.40, 0.73, and 0.76 in the same categories. The WLI model demonstrated an accuracy of 0.56, 0.99, and 0.65 in the dysplasia, SCC, and polyp categories, respectively. Additionally, it obtained a recall rate of 0.39, 0.86, and 0.78 in the same categories, respectively. The limited number of training photos is the reason for the suboptimal performance of the NBI model which can be improved by increasing the dataset.

4.
Cancers (Basel) ; 15(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067338

RESUMO

Skin cancer, a malignant neoplasm originating from skin cell types including keratinocytes, melanocytes, and sweat glands, comprises three primary forms: basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and malignant melanoma (MM). BCC and SCC, while constituting the most prevalent categories of skin cancer, are generally considered less aggressive compared to MM. Notably, MM possesses a greater capacity for invasiveness, enabling infiltration into adjacent tissues and dissemination via both the circulatory and lymphatic systems. Risk factors associated with skin cancer encompass ultraviolet (UV) radiation exposure, fair skin complexion, a history of sunburn incidents, genetic predisposition, immunosuppressive conditions, and exposure to environmental carcinogens. Early detection of skin cancer is of paramount importance to optimize treatment outcomes and preclude the progression of disease, either locally or to distant sites. In pursuit of this objective, numerous computer-aided diagnosis (CAD) systems have been developed. Hyperspectral imaging (HSI), distinguished by its capacity to capture information spanning the electromagnetic spectrum, surpasses conventional RGB imaging, which relies solely on three color channels. Consequently, this study offers a comprehensive exploration of recent CAD investigations pertaining to skin cancer detection and diagnosis utilizing HSI, emphasizing diagnostic performance parameters such as sensitivity and specificity.

5.
Cancers (Basel) ; 15(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37835409

RESUMO

Video capsule endoscopy (VCE) is increasingly used to decrease discomfort among patients owing to its small size. However, VCE has a major drawback of not having narrow band imaging (NBI) functionality. The current VCE has the traditional white light imaging (WLI) only, which has poor performance in the computer-aided detection (CAD) of different types of cancer compared to NBI. Specific cancers, such as esophageal cancer (EC), do not exhibit any early biomarkers, making their early detection difficult. In most cases, the symptoms are unnoticeable, and EC is diagnosed only in later stages, making its 5-year survival rate below 20% on average. NBI filters provide particular wavelengths that increase the contrast and enhance certain features of the mucosa, thereby enabling early identification of EC. However, VCE does not have a slot for NBI functionality because its size cannot be increased. Hence, NBI image conversion from WLI can presently only be achieved in post-processing. In this study, a complete arithmetic assessment of the decorrelated color space was conducted to generate NBI images from WLI images for VCE of the esophagus. Three parameters, structural similarity index metric (SSIM), entropy, and peak-signal-to-noise ratio (PSNR), were used to assess the simulated NBI images. Results show the good performance of the NBI image reproduction method with SSIM, entropy difference, and PSNR values of 93.215%, 4.360, and 28.064 dB, respectively.

6.
Sensors (Basel) ; 21(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34696153

RESUMO

Simultaneous sensing of multiple gases by a single fluorescent-based gas sensor is of utmost importance for practical applications. Such sensing is strongly hindered by cross-sensitivity effects. In this study, we propose a novel analysis method to ameliorate such hindrance. The trial sensor used here was fabricated by coating platinum(II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) and eosin-Y dye molecules on both sides of a filter paper for sensing O2 and NH3 gases simultaneously. The fluorescent peak intensities of the dyes can be quenched by the analytes and this phenomenon is used to identify the gas concentrations. Ideally, each dye is only sensitive to one gas species. However, the fluorescent peak related to O2 sensing is also quenched by NH3 and vice versa. Such cross-sensitivity strongly hinders gas concentration detection. Therefore, we have studied this cross-sensitivity effect systematically and thus proposed a new analysis method for accurate estimation of gas concentration. Comparing with a traditional method (neglecting cross-sensitivity), this analysis improves O2-detection error from -11.4% ± 34.3% to 2.0% ± 10.2% in a mixed background of NH3 and N2.


Assuntos
Amônia , Oxigênio , Corantes , Gases , Platina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA