Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36980644

RESUMO

Cholangiocarcinoma (CCA) are characterized by their desmoplastic and hypervascularized tumor microenvironment (TME), which is mainly composed of tumor cells and cancer-associated fibroblasts (CAFs). CAFs play a pivotal role in general and CCA tumor progression, angiogenesis, metastasis, and the development of treatment resistance. To our knowledge, no continuous human in vivo-like co-culture model is available for research. Therefore, we aimed to establish a new model system (called MUG CCArly) that mimics the desmoplastic microenvironment typically seen in CCA. Proteomic data comparing the new CCA tumor cell line with our co-culture tumor model (CCTM) indicated a higher gene expression correlation of the CCTM with physiological CCA characteristics. A pro-angiogenic TME that is typically observed in CCA could also be better simulated in the CCTM group. Further analysis of secreted proteins revealed CAFs to be the main source of these angiogenic factors. Our CCTM MUG CCArly represents a new, reproducible, and easy-to-handle 3D CCA model for preclinical studies focusing on CCA-stromal crosstalk, tumor angiogenesis, and invasion, as well as the immunosuppressive microenvironment and the involvement of CAFs in the way that drug resistance develops.

2.
J Transl Med ; 21(1): 54, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36710341

RESUMO

BACKGROUND: Clear cell sarcomas (CCSs) are translocated aggressive malignancies, most commonly affecting young adults with a high incidence of metastases and a poor prognosis. Research into the disease is more feasible when adequate models are available. By establishing CCS cell lines from a primary and metastatic lesion and isolating healthy fibroblasts from the same patient, the in vivo process is accurately reflected and aspects of clinical multistep carcinogenesis recapitulated. METHODS: Isolated tumor cells and normal healthy skin fibroblasts from the same patient were compared in terms of growth behavior and morphological characteristics using light and electron microscopy. Tumorigenicity potential was determined by soft agar colony formation assay and in vivo xenograft applications. While genetic differences between the two lineages were examined by copy number alternation profiles, nuclear magnetic resonance spectroscopy determined arginine methylation as epigenetic features. Potential anti-tumor effects of a protein arginine N-methyltransferase type I (PRMT1) inhibitor were elicited in 2D and 3D cell culture experiments using cell viability and apoptosis assays. Statistical significance was calculated by one-way ANOVA and unpaired t-test. RESULTS: The two established CCS cell lines named MUG Lucifer prim and MUG Lucifer met showed differences in morphology, genetic and epigenetic data, reflecting the respective original tissue. The detailed cell line characterization especially in regards to the epigenetic domain allows investigation of new innovative therapies. Based on the epigenetic data, a PRMT1 inhibitor was used to demonstrate the targeted antitumor effect; normal tissue cells isolated and immortalized from the same patient were not affected with the IC50 used. CONCLUSIONS: MUG Lucifer prim, MUG Lucifer met and isolated and immortalized fibroblasts from the same patient represent an ideal in vitro model to explore the biology of CCS. Based on this cell culture model, novel therapies could be tested in the form of PRMT1 inhibitors, which drive tumor cells into apoptosis, but show no effect on fibroblasts, further supporting their potential as promising treatment options in the combat against CCS. The data substantiate the importance of tailored therapies in the advanced metastatic stage of CCS.


Assuntos
Sarcoma de Células Claras , Humanos , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/metabolismo , Sarcoma de Células Claras/patologia , Linhagem Celular , Inibidores Enzimáticos , Arginina/genética , Arginina/metabolismo , Arginina/uso terapêutico , Epigênese Genética , Linhagem Celular Tumoral , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/uso terapêutico , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA