Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13534, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941189

RESUMO

Fenugreek (Trigonella foenum-graecum L.) is a self-pollinated leguminous crop belonging to the Fabaceae family. It is a multipurpose crop used as herb, spice, vegetable and forage. It is a traditional medicinal plant in India attributed with several nutritional and medicinal properties including antidiabetic and anticancer. We have performed a combined transcriptome assembly from RNA sequencing data derived from leaf, stem and root tissues. Around 209,831 transcripts were deciphered from the assembly of 92% completeness and an N50 of 1382 bases. Whilst secondary metabolites of medicinal value, such as trigonelline, diosgenin, 4-hydroxyisoleucine and quercetin, are distributed in several tissues, we report transcripts that bear sequence signatures of enzymes involved in the biosynthesis of such metabolites and are highly expressed in leaves, stem and roots. One of the antidiabetic alkaloid, trigonelline and its biosynthesising enzyme, is highly abundant in leaves. These findings are of value to nutritional and the pharmaceutical industry.


Assuntos
Diosgenina , Plantas Medicinais , Trigonella , Diosgenina/metabolismo , Hipoglicemiantes/metabolismo , Extratos Vegetais/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Transcriptoma , Trigonella/genética , Trigonella/metabolismo
2.
Front Microbiol ; 11: 587306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193242

RESUMO

The combined application of linear amplification-mediated PCR (LAM-PCR) protocols with next-generation sequencing (NGS) has had a large impact on our understanding of retroviral pathogenesis. Previously, considerable effort has been expended to optimize NGS methods to explore the genome-wide distribution of proviral integration sites and the clonal architecture of clinically important retroviruses like human T-cell leukemia virus type-1 (HTLV-1). Once sequencing data are generated, the application of rigorous bioinformatics analysis is central to the biological interpretation of the data. To better exploit the potential information available through these methods, we developed an optimized bioinformatics pipeline to analyze NGS clonality datasets. We found that short-read aligners, specifically designed to manage NGS datasets, provide increased speed, significantly reducing processing time and decreasing the computational burden. This is achieved while also accounting for sequencing base quality. We demonstrate the utility of an additional trimming step in the workflow, which adjusts for the number of reads supporting each insertion site. In addition, we developed a recall procedure to reduce bias associated with proviral integration within low complexity regions of the genome, providing a more accurate estimation of clone abundance. Finally, we recommend the application of a "clean-and-recover" step to clonality datasets generated from large cohorts and longitudinal studies. In summary, we report an optimized bioinformatics workflow for NGS clonality analysis and describe a new set of steps to guide the computational process. We demonstrate that the application of this protocol to the analysis of HTLV-1 and bovine leukemia virus (BLV) clonality datasets improves the quality of data processing and provides a more accurate definition of the clonal landscape in infected individuals. The optimized workflow and analysis recommendations can be implemented in the majority of bioinformatics pipelines developed to analyze LAM-PCR-based NGS clonality datasets.

3.
BMC Plant Biol ; 15: 212, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26315624

RESUMO

BACKGROUND: Krishna Tulsi, a member of Lamiaceae family, is a herb well known for its spiritual, religious and medicinal importance in India. The common name of this plant is 'Tulsi' (or 'Tulasi' or 'Thulasi') and is considered sacred by Hindus. We present the draft genome of Ocimum tenuiflurum L (subtype Krishna Tulsi) in this report. The paired-end and mate-pair sequence libraries were generated for the whole genome sequenced with the Illumina Hiseq 1000, resulting in an assembled genome of 374 Mb, with a genome coverage of 61 % (612 Mb estimated genome size). We have also studied transcriptomes (RNA-Seq) of two subtypes of O. tenuiflorum, Krishna and Rama Tulsi and report the relative expression of genes in both the varieties. RESULTS: The pathways leading to the production of medicinally-important specialized metabolites have been studied in detail, in relation to similar pathways in Arabidopsis thaliana and other plants. Expression levels of anthocyanin biosynthesis-related genes in leaf samples of Krishna Tulsi were observed to be relatively high, explaining the purple colouration of Krishna Tulsi leaves. The expression of six important genes identified from genome data were validated by performing q-RT-PCR in different tissues of five different species, which shows the high extent of urosolic acid-producing genes in young leaves of the Rama subtype. In addition, the presence of eugenol and ursolic acid, implied as potential drugs in the cure of many diseases including cancer was confirmed using mass spectrometry. CONCLUSIONS: The availability of the whole genome of O.tenuiflorum and our sequence analysis suggests that small amino acid changes at the functional sites of genes involved in metabolite synthesis pathways confer special medicinal properties to this herb.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Ocimum/genética , Índia , Ocimum/metabolismo , Folhas de Planta/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA