Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Energy Secur ; 12(2): e406, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440694

RESUMO

Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.

2.
J Exp Bot ; 71(2): 730-741, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31557297

RESUMO

The importance of the glutathione pool in the development of reproductive tissues and in pollen tube growth was investigated in wild-type (WT) Arabidopsis thaliana, a reporter line expressing redox-sensitive green fluorescent protein (roGFP2), and a glutathione-deficient cad2-1 mutant (cad2-1/roGFP2). The cad2-1/roGFP2 flowers had significantly less reduced glutathione (GSH) and more glutathione disulfide (GSSG) than WT or roGFP2 flowers. The stigma, style, anther, germinated pollen grains, and pollen tubes of roGFP2 flowers had a low degree of oxidation. However, these tissues were more oxidized in cad2-1/roGFP2 flowers than the roGFP2 controls. The ungerminated pollen grains were significantly more oxidized than the germinated pollen grains, indicating that the pollen cells become reduced upon the transition from the quiescent to the metabolically active state during germination. The germination percentage was lower in cad2-1/roGFP2 pollen and pollen tube growth arrested earlier than in roGFP2 pollen, demonstrating that increased cellular reduction is essential for pollen tube growth. These findings establish that ungerminated pollen grains exist in a relatively oxidized state compared with germinating pollen grains. Moreover, failure to accumulate glutathione and maintain a high GSH/GSSG ratio has a strong negative effect on pollen germination.


Assuntos
Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Glutationa/metabolismo , Pólen/fisiologia , Flores/metabolismo , Oxirredução
3.
Plant Cell Environ ; 43(1): 209-222, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31702837

RESUMO

Redox processes regulate plant/insect responses, but the precise roles of environmental triggers and specific molecular components remain poorly defined. Aphid fecundity and plant responses were therefore measured in Arabidopsis thaliana mutants deficient in either catalase 2 (cat2), different protein phosphatase 2A (PP2A) subunits or glutathione (cad2, pad2, and clt1) under either moderate (250 µmol m-2 s-1 ) or high (800 µmol m-2 s-1 ) light. Aphid fecundity was decreased in pp2a-b'γ, cat2 and the cat2 pp2a-b'γ double mutants relative to the wild type under moderate irradiance. High light decreased aphid numbers in all genotypes except for cat2. Aphid fecundity was similar in the cat2 and glutathione-, phytoalexin-, and glucosinolate-deficient cat2cad2 double mutants under both irradiances. Aphid-induced increases in transcripts encoding the abscisic acid-related ARABIDOPSIS ZINC-FINGER PROTEIN 1 transcription factor were observed only under moderate light. Conversely, aphid induced increases in transcripts encoding the jasmonate-synthesis enzyme ALLENE OXIDE CYCLASE 3 was observed in all genotypes only under high light. Aphid-induced increases in REDOX RESPONSIVE TRANSCRIPTION FACTOR 1 mRNAs were observed in all genotypes except pp2a-b'ζ1-1 under both irradiances. Aphid fecundity is therefore regulated by cellular redox signalling that is mediated, at least in part, through PP2A-dependent mitochondria to nucleus signalling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Proteína Fosfatase 2/metabolismo , Transdução de Sinais/fisiologia , Animais , Afídeos/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Catalase/genética , Proteínas de Transporte de Cobre/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Glutationa/genética , Luz , Oxirredução , Folhas de Planta/metabolismo , Proteína Fosfatase 2/genética , RNA Mensageiro , Proteínas de Ligação a RNA , Sesquiterpenos/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Proteína ran de Ligação ao GTP , Fitoalexinas
4.
Plant Cell Environ ; 41(5): 1083-1097, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28369975

RESUMO

The redox state of the apoplast is largely determined by ascorbate oxidase (AO) activity. The influence of AO activity on leaf acclimation to changing irradiance was explored in wild-type (WT) and transgenic tobacco (Nicotiana tobaccum) lines containing either high [pumpkin AO (PAO)] or low [tobacco AO (TAO)] AO activity at low [low light (LL); 250 µmol m-2  s-1 ] and high [high light (HL); 1600 µmol m-2  s-1 ] irradiance and following the transition from HL to LL. AO activities changed over the photoperiod, particularly in the PAO plants. AO activity had little effect on leaf ascorbate, which was significantly higher under HL than under LL. Apoplastic ascorbate/dehydroascorbate (DHA) ratios and threonate levels were modified by AO activity. Despite decreased levels of transcripts encoding ascorbate synthesis enzymes, leaf ascorbate increased over the first photoperiod following the transition from HL to LL, to much higher levels than LL-grown plants. Photosynthesis rates were significantly higher in the TAO leaves than in WT or PAO plants grown under HL but not under LL. Sub-sets of amino acids and fatty acids were lower in TAO and WT leaves than in the PAO plants under HL, and following the transition to LL. Light acclimation processes are therefore influenced by the apoplastic as well as chloroplastic redox state.


Assuntos
Ascorbato Oxidase/metabolismo , Ácido Ascórbico/metabolismo , Nicotiana/fisiologia , Aclimatação , Ascorbato Oxidase/genética , Cloroplastos/metabolismo , Luz , Oxirredução , Fotossíntese , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/efeitos da radiação
5.
Exp Appl Acarol ; 73(3-4): 317-326, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29210003

RESUMO

Plants growing in constantly changeable environmental conditions are compelled to evolve regulatory mechanisms to cope with biotic and abiotic stresses. Effective defence to invaders is largely connected with phytohormone regulation, resulting in the production of numerous defensive proteins and specialized metabolites. In our work, we elucidated the role of the Abscisic Acid Insensitive 4 (ABI4) transcription factor in the plant response to the two-spotted spider mite (TSSM). This polyphagous mite is one of the most destructive herbivores, which sucks mesophyll cells of numerous crop and wild plants. Compared to the wild-type (Col-0) Arabidopsis thaliana plants, the abi4 mutant demonstrated increased susceptibility to TSSM, reflected as enhanced female fecundity and greater frequency of mite leaf damage after trypan blue staining. Because ABI4 is regarded as an important player in the plastid-to-nucleus retrograde signalling process, we investigated the plastid envelope membrane dynamics using stroma-associated fluorescent marker. Our results indicated a clear increase in the number of stroma-filled tubular structures deriving from the plastid membrane (stromules) in the close proximity of the site of mite leaf damage, highlighting the importance of chloroplast-derived signals in the response to TSSM feeding activity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Herbivoria , Oviposição , Transdução de Sinais , Tetranychidae/fisiologia , Fatores de Transcrição/genética , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Feminino , Cadeia Alimentar , Folhas de Planta/fisiologia , Fatores de Transcrição/metabolismo
6.
Ann Bot ; 116(4): 497-510, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25851140

RESUMO

BACKGROUND AND AIMS: Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. METHODS: Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. KEY RESULTS: Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. CONCLUSIONS: While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest leaf ranks. At this stage, a number of drought-induced changes in nodule metabolites were observed but no metabolite or transcript markers of senescence could be detected. It is concluded that stress-induced senescence in the lowest leaf ranks precedes nodule senescence, suggesting that leaves of low photosynthetic capacity are sacrificed in favour of nodule nitrogen metabolism.


Assuntos
Secas , Glycine max/fisiologia , Biomarcadores/metabolismo , Mudança Climática , Oxirredução , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Estresse Fisiológico
7.
Plant Cell ; 22(7): 2201-18, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20639446

RESUMO

Although light is essential for photosynthesis, excess light can damage the photosynthetic apparatus and deregulate other cellular processes. Thus, protective integrated regulatory responses that can dissipate excess of absorbed light energy and simultaneously optimize photosynthesis and other cellular processes under variable light conditions can prove highly adaptive. Here, we show that the local and systemic responses to an excess light episode are associated with photoelectrophysiological signaling (PEPS) as well as with changes in nonphotochemical quenching and reactive oxygen species levels. During an excess light incident, PEPS is induced by quantum redox changes in photosystem II and in its proximity and/or by changes in glutathione metabolism in chloroplasts. PEPS is transduced, at least in part, by bundle sheath cells and is light wavelength specific. PEPS systemic propagation speed and action potential are dependent on ASCORBATE PEROXIDASE2 function. Excess light episodes are physiologically memorized in leaves, and the cellular light memory effect is specific for an excess of blue (450 nm) and red (650 nm) light of similar energy. It is concluded that plants possess a complex and dynamic light training and memory system that involves quantum redox, reactive oxygen species, hormonal, and PEPS signaling and is used to optimize light acclimation and immune defenses.


Assuntos
Luz , Transdução de Sinais , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
BMC Plant Biol ; 10: 95, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20500828

RESUMO

BACKGROUND: Plant Receptor-like/Pelle kinases (RLK) are a group of conserved signalling components that regulate developmental programs and responses to biotic and abiotic stresses. One of the largest RLK groups is formed by the Domain of Unknown Function 26 (DUF26) RLKs, also called Cysteine-rich Receptor-like Kinases (CRKs), which have been suggested to play important roles in the regulation of pathogen defence and programmed cell death. Despite the vast number of RLKs present in plants, however, only a few of them have been functionally characterized. RESULTS: We examined the transcriptional regulation of all Arabidopsis CRKs by ozone (O3), high light and pathogen/elicitor treatment - conditions known to induce the production of reactive oxygen species (ROS) in various subcellular compartments. Several CRKs were transcriptionally induced by exposure to O3 but not by light stress. O3 induces an extracellular oxidative burst, whilst light stress leads to ROS production in chloroplasts. Analysis of publicly available microarray data revealed that the transcriptional responses of the CRKs to O3 were very similar to responses to microbes or pathogen-associated molecular patterns (PAMPs). Several mutants altered in hormone biosynthesis or signalling showed changes in basal and O3-induced transcriptional responses. CONCLUSIONS: Combining expression analysis from multiple treatments with mutants altered in hormone biosynthesis or signalling suggest a model in which O3 and salicylic acid (SA) activate separate signaling pathways that exhibit negative crosstalk. Although O3 is classified as an abiotic stress to plants, transcriptional profiling of CRKs showed strong similarities between the O3 and biotic stress responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ozônio/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Regiões Promotoras Genéticas , Proteínas Quinases/genética , RNA de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Transdução de Sinais , Transcrição Gênica
9.
Plant Mol Biol ; 56(2): 255-70, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15604742

RESUMO

More than 120,000 poplar ESTs have been sequenced from 20 different cDNA libraries by the Swedish Centre for Tree Functional Genomics. We screened this EST collection for MYB transcription factors involved in secondary vascular tissue formation, and genes assigned as PttMYB3Ra, PttMYB4a and PttMYB21a were selected for further characterisation. Three MYB genes showed different expression patterns in various organs, tissues and stem sub-sections representing different developmental stages of vascular tissue formation. Furthermore, the analysis showed that PttMYB21a expression was much higher in secondary cell wall formation zone of xylem and phloem fibers than in other developmental zones. Transgenic hybrid aspen plants, expressing the 3'-part of the PttMYB21a gene in antisense orientation were generated to assess the function of PttMYB21a gene in vascular tissue formation and lignification. All transgenic lines showed reduced growth and had fewer internodes compared to the wild-type. The analysis of selected lines showed that acid soluble lignin present in the bark was higher in transgenic lines as compared to wild-type plants. Moreover a higher transcript level of caffeoyl-CoA 3-O-methyltransferase [CCoAOMT]; EC 2.1.1.104) was found in the phloem of the transgenic plants, suggesting that PttMYB21a might function as a transcriptional repressor.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Estruturas Vegetais/genética , Populus/genética , Proteínas Proto-Oncogênicas c-myb/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Metabolismo dos Carboidratos , DNA Antissenso/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hibridização Genética , Lignina/metabolismo , Dados de Sequência Molecular , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Estruturas Vegetais/crescimento & desenvolvimento , Estruturas Vegetais/metabolismo , Plantas Geneticamente Modificadas , Populus/crescimento & desenvolvimento , Populus/metabolismo , Isoformas de Proteínas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estresse Mecânico , Sacarose/farmacologia , Fatores de Transcrição/genética , Madeira
10.
Plant Cell Physiol ; 45(6): 789-94, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15215514

RESUMO

A strongly increased ATP/ADP ratio was found during the nocturnal phase I in crassulacean acid metabolism (CAM)-induced Mesembryanthemum crystallinum plants. Conversely, during the daytime phase III in CAM-performing plants the ATP/ADP ratio dropped to a similar level to that of C3 plants, cytochrome c oxidase activity was stimulated and mitochondrial Mn-superoxide dismutase activity was strongly increased. The findings suggest that a salinity-induced C3-CAM transition might be an efficient energy-conserving strategy for M. crystallinum plants, in which the strong nocturnal ATP production seems to be, at least partially, independent from the coupled mitochondrial electron transport.


Assuntos
Trifosfato de Adenosina/biossíntese , Metabolismo Energético/fisiologia , Mesembryanthemum/metabolismo , Fotossíntese/fisiologia , Sais/metabolismo , Difosfato de Adenosina/metabolismo , Escuridão , Transporte de Elétrons/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Luz , Mitocôndrias/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA