Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071761

RESUMO

The purpose of this study was to determine the role of Tctex1 (DYNLT1, dynein light chain-1) in the pathophysiology of glioblastoma (GBM). To this end, we performed immunohistochemical analyses on tissues from GBM patients (n = 202). Tctex1 was additionally overexpressed in two different GBM cell lines, which were then evaluated in regard to their proliferative and invasive properties. We found that Tctex1 levels were significantly higher in GBM compared to healthy adjacent brain tissues. Furthermore, high Tctex1 expression was significantly associated with the short overall- (p = 0.002, log-rank) and progression-free (p = 0.028, log-rank) survival of GBM patients and was an independent predictor of poor overall survival in multivariate Cox-regression models. In vitro, Tctex1 promoted the metabolic activity, anchorage-independent growth and proliferation of GBM cells. This phenomenon was previously shown to occur via the phosphorylation of retinoblastoma protein (phospho-RB). Here, we found a direct and significant correlation between the levels of Tctex1 and phospho-RB (Ser807/801) in tissues from GBM patients (p = 0.007, Rho = 0.284, Spearman's rank). Finally, Tctex1 enhanced the invasiveness of GBM cells and the release of pro-invasive matrix metalloprotease 2 (MMP2). These findings indicate that Tctex1 promotes GBM progression and therefore might be a useful therapeutic target in this type of cancer.

2.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114208

RESUMO

G-protein coupled cannabinoid CB2 receptor signaling and function is primarily mediated by its inhibitory effect on adenylate cyclase. The visualization and monitoring of agonist dependent dynamic 3',5'-cyclic adenosine monophosphate (cAMP) signaling at the single cell level is still missing for CB2 receptors. This paper presents an application of a live cell imaging while using a Förster resonance energy transfer (FRET)-based biosensor, Epac1-camps, for quantification of cAMP. We established HEK293 cells stably co-expressing human CB2 and Epac1-camps and quantified cAMP responses upon Forskolin pre-stimulation, followed by treatment with the CB2 ligands JWH-133, HU308, ß-caryophyllene, or 2-arachidonoylglycerol. We could identify cells showing either an agonist dependent CB2-response as expected, cells displaying no response, and cells with constitutive receptor activity. In Epac1-CB2-HEK293 responder cells, the terpenoid ß-caryophyllene significantly modified the cAMP response through CB2. For all of the tested ligands, a relatively high proportion of cells with constitutively active CB2 receptors was identified. Our method enabled the visualization of intracellular dynamic cAMP responses to the stimuli at single cell level, providing insights into the nature of heterologous CB2 expression systems that contributes to the understanding of Gαi-mediated G-Protein coupled receptor (GPCR) signaling in living cells and opens up possibilities for future investigations of endogenous CB2 responses.


Assuntos
AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Ácidos Araquidônicos/farmacologia , Canabinoides/farmacologia , Colforsina/farmacologia , Endocanabinoides/farmacologia , Transferência Ressonante de Energia de Fluorescência , Glicerídeos/farmacologia , Células HEK293 , Humanos , Sesquiterpenos Policíclicos/farmacologia , Transdução de Sinais , Análise de Célula Única
3.
J Bone Miner Res ; 35(9): 1726-1737, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32369212

RESUMO

Since a key function of Wnt1 in brain development was established early on through the generation of non-viable Wnt1-deficient mice, it was initially surprising that WNT1 mutations were found to cause either early-onset osteoporosis (EOOP) or osteogenesis imperfecta type XV (OI-XV). The deduced function of Wnt1 as an osteoanabolic factor has been confirmed in various mouse models with bone-specific inactivation or overexpression, but mice carrying disease-causing Wnt1 mutations have not yet been described. Triggered by the clinical analysis of EOOP patients carrying a heterozygous WNT1 mutation (p.R235W), we introduced this mutation into the murine Wnt1 gene to address the question of whether this would cause a skeletal phenotype. We observed that Wnt1+/R235W and Wnt1R235W/R235W mice were born at the expected Mendelian ratio and that they did not display postnatal lethality or obvious nonskeletal phenotypes. At 12 weeks of age, the homozygous presence of the Wnt1 mutation was associated with reduced trabecular and cortical bone mass, explained by a lower bone formation rate compared with wild-type littermates. At 52 weeks of age, we also observed a moderate bone mass reduction in heterozygous Wnt1+/R235W mice, thereby underscoring their value as a model of WNT1-dependent EOOP. Importantly, when we treated wild-type and Wnt1+/R235W mice by daily injection of parathyroid hormone (PTH), we detected the same osteoanabolic influence in both groups, together with an increased cortical thickness in the mutant mice. Our data demonstrate the pathogenicity of the WNT1-R235W mutation, confirm that controlling skeletal integrity is the primary physiological function of Wnt1, and suggest that osteoanabolic treatment with teriparatide should be applicable for individuals with WNT1-dependent EOOP. © 2020 American Society for Bone and Mineral Research.


Assuntos
Mutação , Animais , Osso e Ossos , Camundongos , Mutação/genética , Osteogênese Imperfeita/genética , Fenótipo , Proteína Wnt1/genética
4.
Front Mol Neurosci ; 12: 224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616248

RESUMO

The endocannabinoid system (ECS) consists particularly of cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands, and enzymes that synthesize and degrade their ligands. It acts in a variety of organs and disease states ranging from cancer progression over neuropathic pain to neurodegeneration. Protein components engaged in the signaling, trafficking, and homeostasis machinery of the G-protein coupled CB2, are however largely unknown. It is therefore important to identify further interaction partners to better understand CB2 receptor functions in physiology and pathophysiology. For this purpose, we used an affinity purification and mass spectrometry-based proteomics approach of Strep-HA-CB2 receptor in HEK293 cells. After subtraction of background interactions and protein frequency library assessment we could identify 83 proteins that were classified by the identification of minimally 2 unique peptides as highly probable interactors. A functional protein association network analysis obtained an interaction network with a significant enrichment of proteins functionally involved in protein metabolic process, in endoplasmic reticulum, response to stress but also in lipid metabolism and membrane organization. The network especially contains proteins involved in biosynthesis and trafficking like calnexin, Sec61A, tubulin chains TUBA1C and TUBB2B, TMED2, and TMED10. Six proteins that were only expressed in stable CB2 expressing cells were DHC24, DHRS7, GGT7, HECD3, KIAA2013, and PLS1. To exemplify the validity of our approach, we chose a candidate having a relatively low number of edges in the network to increase the likelihood of a direct protein interaction with CB2 and focused on the scaffold/phagosomal protein p62/SQSTM1. Indeed, we independently confirmed the interaction by co-immunoprecipitation and immunocytochemical colocalization studies. 3D reconstruction of confocal images furthermore showed CB2 localization in close proximity to p62 positive vesicles at the cell membrane. In summary, we provide a comprehensive repository of the CB2 interactome in HEK293 cells identified by a systematic unbiased approach, which can be used in future experiments to decipher the signaling and trafficking complex of this cannabinoid receptor. Future studies will have to analyze the exact mechanism of the p62-CB2 interaction as well as its putative role in disease pathophysiology.

5.
Front Mol Neurosci ; 11: 159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867351

RESUMO

Glioblastoma (GBM) is the most malignant brain tumor and one of the deadliest types of solid cancer overall. Despite aggressive therapeutic approaches consisting of maximum safe surgical resection and radio-chemotherapy, more than 95% of GBM patients die within 5 years after diagnosis. Thus, there is still an urgent need to develop novel therapeutic strategies against this disease. Accumulating evidence indicates that cannabinoids have potent anti-tumor functions and might be used successfully in the treatment of GBM. This review article summarizes the latest findings on the molecular effects of cannabinoids on GBM, both in vitro and in (pre-) clinical studies in animal models and patients. The therapeutic effect of cannabinoids is based on reduction of tumor growth via inhibition of tumor proliferation and angiogenesis but also via induction of tumor cell death. Additionally, cannabinoids were shown to inhibit the invasiveness and the stem cell-like properties of GBM tumors. Recent phase II clinical trials indicated positive results regarding the survival of GBM patients upon cannabinoid treatment. Taken together these findings underline the importance of elucidating the full pharmacological effectiveness and the molecular mechanisms of the cannabinoid system in GBM pathophysiology.

6.
Biochem Pharmacol ; 99: 60-72, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26410677

RESUMO

The activator of G protein signalling AGS2 (Tctex-1) forms protein complexes with Gßγ, and controls cell proliferation by regulating cell cycle progression. A direct interaction of Tctex-1 with various G protein-coupled receptors has been reported. Since the carboxyl terminal portion of CB2 carries a putative Tctex-1 binding motif, we investigated the potential interplay of CB2 and Tctex-1 in the absence and presence of Gßγ. The supposed interaction of cannabinoid receptor CB2 with Tctex-1 and the influence of CB2 on the formation of Tctex-1-Gßγ-complexes were studied by co- and/or immunoprecipitation experiments in transiently transfected HEK293 cells. The analysis on Tctex-1 protein was performed in the absence and presence of the ligands JWH 133, 2-AG, and AM 630, the protein biosynthesis inhibitor cycloheximide or the protein degradation blockers MG132, NH4Cl/leupeptin or bafilomycin. Our results show that CB2 neither directly nor indirectly via Gßγ interacts with Tctex-1, but competes with Tctex-1 in binding to Gßγ. The Tctex-1-Gßγ protein interaction was disrupted by CB2 receptor expression resulting in a release of Tctex-1 from the complex, and its degradation by the proteasome and partly by lysosomes. The decrease in Tctex-1 protein levels is induced by CB2 expression "dose-dependently" and is independent of stimulation by agonist or blocking by an inverse agonist treatment. The results suggest that CB2 receptor expression independent of its activation by agonists is sufficient to competitively disrupt Gßγ-Tctex-1 complexes, and to initiate Tctex-1 degradation. These findings implicate that CB2 receptor expression modifies the stability of intracellular protein complexes by a non-canonical pathway.


Assuntos
Dineínas/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Receptor CB2 de Canabinoide/biossíntese , Agonismo Inverso de Drogas , Regulação da Expressão Gênica , Células HEK293 , Humanos , Indóis/farmacologia , Ligação Proteica/fisiologia , Receptor CB2 de Canabinoide/antagonistas & inibidores
7.
Proc Natl Acad Sci U S A ; 105(26): 9099-104, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18574142

RESUMO

The psychoactive cannabinoids from Cannabis sativa L. and the arachidonic acid-derived endocannabinoids are nonselective natural ligands for cannabinoid receptor type 1 (CB(1)) and CB(2) receptors. Although the CB(1) receptor is responsible for the psychomodulatory effects, activation of the CB(2) receptor is a potential therapeutic strategy for the treatment of inflammation, pain, atherosclerosis, and osteoporosis. Here, we report that the widespread plant volatile (E)-beta-caryophyllene [(E)-BCP] selectively binds to the CB(2) receptor (K(i) = 155 +/- 4 nM) and that it is a functional CB(2) agonist. Intriguingly, (E)-BCP is a common constituent of the essential oils of numerous spice and food plants and a major component in Cannabis. Molecular docking simulations have identified a putative binding site of (E)-BCP in the CB(2) receptor, showing ligand pi-pi stacking interactions with residues F117 and W258. Upon binding to the CB(2) receptor, (E)-BCP inhibits adenylate cylcase, leads to intracellular calcium transients and weakly activates the mitogen-activated kinases Erk1/2 and p38 in primary human monocytes. (E)-BCP (500 nM) inhibits lipopolysaccharide (LPS)-induced proinflammatory cytokine expression in peripheral blood and attenuates LPS-stimulated Erk1/2 and JNK1/2 phosphorylation in monocytes. Furthermore, peroral (E)-BCP at 5 mg/kg strongly reduces the carrageenan-induced inflammatory response in wild-type mice but not in mice lacking CB(2) receptors, providing evidence that this natural product exerts cannabimimetic effects in vivo. These results identify (E)-BCP as a functional nonpsychoactive CB(2) receptor ligand in foodstuff and as a macrocyclic antiinflammatory cannabinoid in Cannabis.


Assuntos
Canabinoides/metabolismo , Dieta , Sesquiterpenos/metabolismo , Administração Oral , Animais , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Canabinoides/administração & dosagem , Canabinoides/química , Canabinoides/farmacologia , Cannabis/química , Carragenina , Células Cultivadas , Biologia Computacional , Edema/induzido quimicamente , Edema/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Interleucina-1beta/sangue , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Camundongos , Monócitos/enzimologia , Óleos Voláteis/química , Sesquiterpenos Policíclicos , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Sesquiterpenos/administração & dosagem , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue
8.
Nat Genet ; 38(10): 1184-91, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16964263

RESUMO

Neurodegenerative disorders such as Parkinson and Alzheimer disease cause motor and cognitive dysfunction and belong to a heterogeneous group of common and disabling disorders. Although the complex molecular pathophysiology of neurodegeneration is largely unknown, major advances have been achieved by elucidating the genetic defects underlying mendelian forms of these diseases. This has led to the discovery of common pathophysiological pathways such as enhanced oxidative stress, protein misfolding and aggregation and dysfunction of the ubiquitin-proteasome system. Here, we describe loss-of-function mutations in a previously uncharacterized, predominantly neuronal P-type ATPase gene, ATP13A2, underlying an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia (PARK9, Kufor-Rakeb syndrome). Whereas the wild-type protein was located in the lysosome of transiently transfected cells, the unstable truncated mutants were retained in the endoplasmic reticulum and degraded by the proteasome. Our findings link a class of proteins with unknown function and substrate specificity to the protein networks implicated in neurodegeneration and parkinsonism.


Assuntos
Adenosina Trifosfatases/genética , Demência/etiologia , Lisossomos/enzimologia , Mutação , Transtornos Parkinsonianos/genética , ATPases Translocadoras de Prótons/genética , Adenosina Trifosfatases/metabolismo , Demência/genética , Retículo Endoplasmático/enzimologia , Feminino , Humanos , Masculino , Mesencéfalo/enzimologia , Mesencéfalo/patologia , Neurônios/enzimologia , Neurônios/patologia , Transtornos Parkinsonianos/complicações
9.
Nature ; 434(7034): 782-6, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15815632

RESUMO

Atherosclerosis is a chronic inflammatory disease, and is the primary cause of heart disease and stroke in Western countries. Derivatives of cannabinoids such as delta-9-tetrahydrocannabinol (THC) modulate immune functions and therefore have potential for the treatment of inflammatory diseases. We investigated the effects of THC in a murine model of established atherosclerosis. Oral administration of THC (1 mg kg(-1) per day) resulted in significant inhibition of disease progression. This effective dose is lower than the dose usually associated with psychotropic effects of THC. Furthermore, we detected the CB2 receptor (the main cannabinoid receptor expressed on immune cells) in both human and mouse atherosclerotic plaques. Lymphoid cells isolated from THC-treated mice showed diminished proliferation capacity and decreased interferon-gamma secretion. Macrophage chemotaxis, which is a crucial step for the development of atherosclerosis, was also inhibited in vitro by THC. All these effects were completely blocked by a specific CB2 receptor antagonist. Our data demonstrate that oral treatment with a low dose of THC inhibits atherosclerosis progression in the apolipoprotein E knockout mouse model, through pleiotropic immunomodulatory effects on lymphoid and myeloid cells. Thus, THC or cannabinoids with activity at the CB2 receptor may be valuable targets for treating atherosclerosis.


Assuntos
Arteriosclerose/tratamento farmacológico , Arteriosclerose/patologia , Dronabinol/administração & dosagem , Dronabinol/uso terapêutico , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Arteriosclerose/complicações , Arteriosclerose/imunologia , Células Cultivadas , Quimiotaxia de Leucócito/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Dronabinol/farmacologia , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Interferon gama/metabolismo , Interferon gama/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Receptores CCR2 , Receptores de Quimiocinas/genética , Taxa de Sobrevida , Células Th1/citologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Tioglicolatos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
10.
Gastroenterology ; 128(3): 742-55, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15765409

RESUMO

BACKGROUND & AIMS: Hepatic myofibroblasts are central for the development of liver fibrosis associated with chronic liver diseases, and blocking their accumulation may prevent fibrogenesis. Cannabinoids are the active components of marijuana and act via 2 G-protein-coupled receptors, CB1 and CB2. Here, we investigated whether liver fibrogenic cells are a target of cannabinoids. METHODS: CB2 receptors were characterized in biopsy specimens of normal human liver and active cirrhosis by immunohistochemistry, and in cultures of hepatic stellate cells and hepatic myofibroblasts by reverse-transcription polymerase chain reaction (RT-PCR), immunocytochemistry, and GTPgammaS assays. Functional studies were performed in cultured hepatic myofibroblasts and activated hepatic stellate cells. Carbon tetrachloride-induced liver fibrosis was studied in mice invalidated for CB2 receptors. RESULTS: In liver biopsy specimens from patients with active cirrhosis of various etiologies, CB2 receptors were expressed in nonparenchymal cells located within and at the edge of fibrous septa in smooth muscle alpha-actin-positive cells. In contrast, CB2 receptors were not detected in normal human liver. CB2 receptors were also detected in cultured hepatic myofibroblasts and in activated hepatic stellate cells. Their activation triggered potent antifibrogenic effects, namely, growth inhibition and apoptosis. Growth inhibition involved cyclooxygenase-2, and apoptosis resulted from oxidative stress. Finally, mice invalidated for CB2 receptors developed enhanced liver fibrosis following chronic carbon tetrachloride treatment as compared with wild-type mice. CONCLUSIONS: These data constitute the first demonstration that CB2 receptors are highly up-regulated in the cirrhotic liver, predominantly in hepatic fibrogenic cells. Moreover, this study also highlights the antifibrogenic role of CB2 receptors during chronic liver injury.


Assuntos
Cirrose Hepática/prevenção & controle , Fígado/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Adulto , Idoso , Animais , Apoptose , Ácidos Araquidônicos/farmacologia , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Dronabinol/farmacologia , Endocanabinoides , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicerídeos/farmacologia , Humanos , Fígado/patologia , Fígado/fisiopatologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA