Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bone ; 176: 116870, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37586472

RESUMO

Aerobic exercise has many beneficial effects on human health. One of them, is to influence positively bone remodeling through, however, incompletely understood mechanisms. Given its recently demonstrated role as a mediator of the bone to muscle to bone crosstalk during exercise, we hypothesized that interleukin-6 (IL-6) signaling in bone may contribute to the beneficial effect that exercise has on bone homeostasis. In this study, we first show that aerobic exercise increases the expression of Il6r in bones of WT mice. Then, we analyzed a mutant mouse strain that lacks the IL-6 receptor alpha specifically in osteoblasts (Il6rosb-/-). As it has been reported in the case of Il6-/- mice, in sedentary conditions, bone mass and remodeling were normal in adult Il6rosb-/- mice when compared to controls. In contrast, Il6rosb-/- mice that were subjected to aerobic exercise did not show the increase in bone mass and remodeling parameters that control littermates demonstrated. Moreover, Il6rosb-/- mice undergoing aerobic exercise showed a severe impairment in bone formation, indicating that activation of bone-forming cells is defective when IL-6 signaling in osteoblasts is disrupted. In sum, this study provides evidence that a function of IL-6 signaling in osteoblasts is to promote high bone turnover during aerobic exercise.


Assuntos
Interleucina-6 , Osteoblastos , Adulto , Camundongos , Humanos , Animais , Interleucina-6/metabolismo , Osteoblastos/metabolismo , Remodelação Óssea , Osso e Ossos/metabolismo , Osteogênese
2.
J Exp Med ; 218(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34705037

RESUMO

In this issue of JEM, a paper by Kim et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20211872), asking a simple question through a remarkable alliance of human and mouse genetics, demonstrates that a prevalent hematological condition can lead to osteoporosis. This work is important by virtue of the quality of its results and its implication for the relationship between bone and its marrow.


Assuntos
Medula Óssea , Animais , Camundongos
3.
Sci Rep ; 11(1): 3447, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568757

RESUMO

Phosphatidylinositol 3-kinase (PI3K) plays an important role in protein metabolism and cell growth. We here show that mice (M-PDK1KO mice) with skeletal muscle-specific deficiency of 3'-phosphoinositide-dependent kinase 1 (PDK1), a key component of PI3K signaling pathway, manifest a reduced skeletal muscle mass under the static condition as well as impairment of mechanical load-induced muscle hypertrophy. Whereas mechanical load-induced changes in gene expression were not affected, the phosphorylation of ribosomal protein S6 kinase (S6K) and S6 induced by mechanical load was attenuated in skeletal muscle of M-PDK1KO mice, suggesting that PDK1 regulates muscle hypertrophy not through changes in gene expression but through stimulation of kinase cascades such as the S6K-S6 axis, which plays a key role in protein synthesis. Administration of the ß2-adrenergic receptor (AR) agonist clenbuterol activated the S6K-S6 axis in skeletal muscle and induced muscle hypertrophy in mice. These effects of clenbuterol were attenuated in M-PDK1KO mice, and mechanical load-induced activation of the S6K-S6 axis and muscle hypertrophy were inhibited in mice with skeletal muscle-specific deficiency of ß2-AR. Our results suggest that PDK1 regulates skeletal muscle mass under the static condition and that it contributes to mechanical load-induced muscle hypertrophy, at least in part by mediating signaling from ß2-AR.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Agonistas Adrenérgicos beta/farmacologia , Animais , Linhagem Celular , Clembuterol/farmacologia , Hipertrofia , Insulina/metabolismo , Fenômenos Mecânicos , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais
4.
J Clin Invest ; 130(6): 2888-2902, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32078586

RESUMO

Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin 6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exercise nor the means by which this cytokine enhances exercise capacity has been formally established yet. Here we show through genetic means that the majority of circulating IL-6 detectable during exercise originates from muscle and that to increase exercise capacity, IL-6 must signal in osteoblasts to favor osteoclast differentiation and the release of bioactive osteocalcin in the general circulation. This explains why mice lacking the IL-6 receptor only in osteoblasts exhibit a deficit in exercise capacity of similar severity to the one seen in mice lacking muscle-derived IL-6 (mIL-6), and why this deficit is correctable by osteocalcin but not by IL-6. Furthermore, in agreement with the notion that IL-6 acts through osteocalcin, we demonstrate that mIL-6 promotes nutrient uptake and catabolism into myofibers during exercise in an osteocalcin-dependent manner. Finally, we show that the crosstalk between osteocalcin and IL-6 is conserved between rodents and humans. This study provides evidence that a muscle-bone-muscle endocrine axis is necessary to increase muscle function during exercise in rodents and humans.


Assuntos
Interleucina-6/imunologia , Músculo Esquelético/imunologia , Osteoblastos/imunologia , Transdução de Sinais/imunologia , Animais , Feminino , Interleucina-6/genética , Macaca mulatta , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
5.
J Pathol ; 249(1): 102-113, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038736

RESUMO

Serotonin (5-HT) signaling pathways are thought to be involved in colorectal tumorigenesis (CRT), but the role of 5-HT synthesis in the early steps of this process is presently unknown. In this study, we used carcinogen treatment in the tryptophan hydroxylase 1 knockout (Tph1KO) and transgenic (Tph1fl/fl VillinCre ) mouse models defective in 5-HT synthesis to investigate the early mutagenic events associated with CRT. Our observations of the colonic crypt post-treatment followed a timeline designed to understand how disruption of 5-HT synthesis affects the initial steps leading to CRT. We found Tph1KO mice had decreased development of both allograft tumors and colitis-related CRT. Interestingly, carcinogenic exposure alone induced multiple colon tumors and increased cyclooxygenase-2 (Ptgs2) expression in Tph1KO mice. Deletion of interleukin 6 (Il6) in Tph1KO mice confirmed that inflammation was a part of the process. 5-HT deficiency increased colonic DNA damage but inhibited genetic repair of specific carcinogen-related damage, leading to CRT-related inflammatory reactions and dysplasia. To validate a secondary effect of 5-HT deficiency on another DNA repair pathway, we exposed Tph1KO mice to ionizing radiation and found an increase in DNA damage associated with reduced levels of ataxia telangiectasia and Rad3 related (Atr) gene expression in colonocytes. Restoring 5-HT levels with 5-hydroxytryptophan treatment decreased levels of DNA damage and increased Atr expression. Analysis of Tph1fl/fl VillinCre mice with intestine-specific loss of 5-HT synthesis confirmed that DNA repair was tissue specific. In this study, we report a novel protective role for 5-HT synthesis that promotes DNA repair activity during the early stages of colorectal carcinogenesis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Transformação Celular Neoplásica/metabolismo , Colo/metabolismo , Neoplasias Colorretais/prevenção & controle , Dano ao DNA , Reparo do DNA , Lesões Pré-Cancerosas/prevenção & controle , Serotonina/biossíntese , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/deficiência , Interleucina-6/genética , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Transdução de Sinais , Fatores de Tempo , Triptofano Hidroxilase/deficiência , Triptofano Hidroxilase/genética
6.
Nature ; 568(7753): 541-545, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971820

RESUMO

Osteoclasts are multinucleated giant cells that resorb bone, ensuring development and continuous remodelling of the skeleton and the bone marrow haematopoietic niche. Defective osteoclast activity leads to osteopetrosis and bone marrow failure1-9, whereas excess activity can contribute to bone loss and osteoporosis10. Osteopetrosis can be partially treated by bone marrow transplantation in humans and mice11-18, consistent with a haematopoietic origin of osteoclasts13,16,19 and studies that suggest that they develop by fusion of monocytic precursors derived from haematopoietic stem cells in the presence of CSF1 and RANK ligand1,20. However, the developmental origin and lifespan of osteoclasts, and the mechanisms that ensure maintenance of osteoclast function throughout life in vivo remain largely unexplored. Here we report that osteoclasts that colonize fetal ossification centres originate from embryonic erythro-myeloid progenitors21,22. These erythro-myeloid progenitor-derived osteoclasts are required for normal bone development and tooth eruption. Yet, timely transfusion of haematopoietic-stem-cell-derived monocytic cells in newborn mice is sufficient to rescue bone development in early-onset autosomal recessive osteopetrosis. We also found that the postnatal maintenance of osteoclasts, bone mass and the bone marrow cavity involve iterative fusion of circulating blood monocytic cells with long-lived osteoclast syncytia. As a consequence, parabiosis or transfusion of monocytic cells results in long-term gene transfer in osteoclasts in the absence of haematopoietic-stem-cell chimerism, and can rescue an adult-onset osteopetrotic phenotype caused by cathepsin K deficiency23,24. In sum, our results identify the developmental origin of osteoclasts and a mechanism that controls their maintenance in bones after birth. These data suggest strategies to rescue osteoclast deficiency in osteopetrosis and to modulate osteoclast activity in vivo.


Assuntos
Células-Tronco Hematopoéticas/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteopetrose/genética , Animais , Animais Recém-Nascidos , Desenvolvimento Ósseo , Feminino , Genes Recessivos , Masculino , Camundongos , Osteopetrose/patologia , Erupção Dentária
7.
Neuron ; 100(6): 1401-1413.e6, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30415995

RESUMO

Epithelial-neuronal signaling is essential for sensory encoding in touch, itch, and nociception; however, little is known about the release mechanisms and neurotransmitter receptors through which skin cells govern neuronal excitability. Merkel cells are mechanosensory epidermal cells that have long been proposed to activate neuronal afferents through chemical synaptic transmission. We employed a set of classical criteria for chemical neurotransmission as a framework to test this hypothesis. RNA sequencing of adult mouse Merkel cells demonstrated that they express presynaptic molecules and biosynthetic machinery for adrenergic transmission. Moreover, live-cell imaging directly demonstrated that Merkel cells mediate activity- and VMAT-dependent release of fluorescent catecholamine neurotransmitter analogs. Touch-evoked firing in Merkel-cell afferents was inhibited either by pre-synaptic silencing of SNARE-mediated vesicle release from Merkel cells or by neuronal deletion of ß2-adrenergic receptors. Together, these results identify both pre- and postsynaptic mechanisms through which Merkel cells excite mechanosensory afferents to encode gentle touch. VIDEO ABSTRACT.


Assuntos
Adrenérgicos/metabolismo , Vias Aferentes/fisiologia , Células de Merkel/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Cápsulas Bacterianas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Gânglios Espinais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Pele/citologia , Pele/inervação , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
8.
Bone ; 115: 43-49, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28428077

RESUMO

Exercise is an evolutionary conserved survival function that nowadays has beneficial health effects. The increased metabolic activity of contracting skeletal muscle affects the biology of many organs involved in regulating muscle functions. The discovery of hormones and cytokines secreted by bone and skeletal muscle during exercise, has recently added experimental credence to the notion that a crosstalk exists between these organs. Bone through the hormone osteocalcin, promotes exercise capacity in the mouse. After binding to a G-coupled protein receptor, Gprc6a, osteocalcin increases nutrients uptake and catabolism in myofibers during exercise. The catabolic aspect of osteocalcin distinguishes it from insulin signaling. In addition, osteocalcin regulates the endocrine function of skeletal muscle because it enhances the expression of interleukin-6 (IL-6). IL-6 is produced and secreted by contracting skeletal muscle and exerts autocrine, paracrine and systemic effects. One of the systemic functions of IL-6 is to drive the generation of bioactive osteocalcin. Altogether, these studies have revealed a feed-forward loop between bone and skeletal muscle that are necessary and sufficient for optimum exercise capacity. This endocrine regulation of exercise biology, suggest novel and adapted strategies for the prevention or treatment of age related muscle loss.


Assuntos
Osso e Ossos/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Receptor Cross-Talk/fisiologia , Animais , Humanos , Interleucina-6/metabolismo , Osteocalcina/metabolismo
9.
Mol Metab ; 6(12): 1610-1615, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29157601

RESUMO

OBJECTIVE: That the bone-derived hormone osteocalcin is necessary to promote normal brain development and function, along with its recently described sufficiency in reversing cognitive manifestations of aging, raises novel questions. One of these is to assess whether bone health, which deteriorates rapidly with aging, is a significant determinant of cognition and anxiety-like behavior. METHODS: To begin addressing this question, we used mice haploinsufficient for Runx2, the master gene of osteoblast differentiation and the main regulator of Osteocalcin expression. Control and Runx2+/- mice were evaluated for the expression of osteocalcin's target genes in the brain and for behavioral parameters, using two assays each for cognition and anxiety-like behavior. RESULTS: We found that adult Runx2+/- mice had defects in bone resorption, reduced circulating levels of bioactive osteocalcin, and reduced expression of osteocalcin's target genes in the brain. Consequently, they had significant impairment in cognitive function and increased anxiety-like behavior. CONCLUSIONS: These results indicate that bone remodeling is a determinant of brain function.


Assuntos
Ansiedade/genética , Remodelação Óssea , Cognição , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Encéfalo/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteocalcina/sangue
10.
Oncoimmunology ; 6(6): e1321185, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680757

RESUMO

PTP1B and TC-PTP are highly related protein-tyrosine phosphatases (PTPs) that regulate the JAK/STAT signaling cascade essential for cytokine-receptor activation in immune cells. Here, we describe a novel immunotherapy approach whereby monocyte-derived dendritic cell (moDC) function is enhanced by modulating the enzymatic activities of PTP1B and TC-PTP. To downregulate or delete the activity/expression of these PTPs, we generated mice with PTP-specific deletions in the dendritic cell compartment or used PTP1B and TC-PTP specific inhibitor. While total ablation of PTP1B or TC-PTP expression leads to tolerogenic DCs via STAT3 hyperactivation, downregulation of either phosphatase remarkably shifts the balance toward an immunogenic DC phenotype due to hyperactivation of STAT4, STAT1 and Src kinase. The resulting increase in IL-12 and IFNγ production subsequently amplifies the IL-12/STAT4/IFNγ/STAT1/IL-12 positive autocrine loop and enhances the therapeutic potential of mature moDCs in tumor-bearing mice. Furthermore, pharmacological inhibition of both PTPs improves the maturation of defective moDCs derived from pancreatic cancer (PaC) patients. Our study provides a new advance in the use of DC-based cancer immunotherapy that is complementary to current cancer therapeutics.

11.
J Clin Invest ; 127(7): 2612-2625, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28581440

RESUMO

Cleidocranial dysplasia (CCD) is an autosomal dominant human disorder characterized by abnormal bone development that is mainly due to defective intramembranous bone formation by osteoblasts. Here, we describe a mouse strain lacking the E3 ubiquitin ligase RNF146 that shows phenotypic similarities to CCD. Loss of RNF146 stabilized its substrate AXIN1, leading to impairment of WNT3a-induced ß-catenin activation and reduced Fgf18 expression in osteoblasts. We show that FGF18 induces transcriptional coactivator with PDZ-binding motif (TAZ) expression, which is required for osteoblast proliferation and differentiation through transcriptional enhancer associate domain (TEAD) and runt-related transcription factor 2 (RUNX2) transcription factors, respectively. Finally, we demonstrate that adipogenesis is enhanced in Rnf146-/- mouse embryonic fibroblasts. Moreover, mice with loss of RNF146 within the osteoblast lineage had increased fat stores and were glucose intolerant with severe osteopenia because of defective osteoblastogenesis and subsequent impaired osteocalcin production. These findings indicate that RNF146 is required to coordinate ß-catenin signaling within the osteoblast lineage during embryonic and postnatal bone development.


Assuntos
Desenvolvimento Ósseo , Displasia Cleidocraniana/metabolismo , Metabolismo Energético , Osteoblastos/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteína Axina/biossíntese , Proteína Axina/genética , Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Humanos , Camundongos , Camundongos Knockout , Osteocalcina/biossíntese , Osteocalcina/genética , Ubiquitina-Proteína Ligases/genética , beta Catenina/genética , beta Catenina/metabolismo
12.
Cell Metab ; 23(6): 1078-1092, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27304508

RESUMO

Circulating levels of undercarboxylated and bioactive osteocalcin double during aerobic exercise at the time levels of insulin decrease. In contrast, circulating levels of osteocalcin plummet early during adulthood in mice, monkeys, and humans of both genders. Exploring these observations revealed that osteocalcin signaling in myofibers is necessary for adaptation to exercise by favoring uptake and catabolism of glucose and fatty acids, the main nutrients of myofibers. Osteocalcin signaling in myofibers also accounts for most of the exercise-induced release of interleukin-6, a myokine that promotes adaptation to exercise in part by driving the generation of bioactive osteocalcin. We further show that exogenous osteocalcin is sufficient to enhance the exercise capacity of young mice and to restore to 15-month-old mice the exercise capacity of 3-month-old mice. This study uncovers a bone-to-muscle feedforward endocrine axis that favors adaptation to exercise and can reverse the age-induced decline in exercise capacity.


Assuntos
Adaptação Fisiológica , Fibras Musculares Esqueléticas/metabolismo , Osteocalcina/metabolismo , Condicionamento Físico Animal , Transdução de Sinais , Envelhecimento/metabolismo , Animais , Ácidos Graxos/metabolismo , Glucose/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos
13.
Cell ; 165(4): 882-95, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27133169

RESUMO

High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity.


Assuntos
Encéfalo/metabolismo , Dieta Hiperlipídica , Glucose/metabolismo , Obesidade/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Cognição , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Camundongos , Células Mieloides/metabolismo
14.
Cell Rep ; 15(1): 27-35, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27052174

RESUMO

The E3 ubiquitin ligase Smurf1 targets the master regulator of osteoblast differentiation, Runx2, for degradation, yet the function of Smurf1, if any, during osteoblast differentiation in vivo is ill defined. Here, we show that Smurf1 prevents osteoblast differentiation by decreasing Runx2 accumulation in osteoblasts. Remarkably, mice harboring a substitution mutation at serine 148 (S148) in Smurf1 that prevents its phosphorylation by AMPK (Smurf1(ki/ki)) display a premature osteoblast differentiation phenotype that is equally severe as that of Smurf1(-/-) mice, as well as a high bone mass, and are also hyperinsulinemic and hypoglycemic. Consistent with the fact that Smurf1 targets the insulin receptor for degradation, there is, in Smurf1(ki/ki) mice, an increase in insulin signaling in osteoblasts that triggers a rise in the circulating levels of osteocalcin, a hormone that favors insulin secretion. These results identify Smurf1 as a determinant of osteoblast differentiation during the development of bone formation and glucose homeostasis post-natally and demonstrate the necessity of S148 for these functions.


Assuntos
Diferenciação Celular , Glucose/metabolismo , Hipoglicemia/metabolismo , Osteoblastos/metabolismo , Osteogênese , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Homeostase , Hipoglicemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Osteoblastos/citologia , Osteocalcina/metabolismo , Receptor de Insulina/metabolismo , Serina/genética , Serina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
15.
Sci Rep ; 5: 13418, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26302868

RESUMO

JMJD3 (KDM6B) is an H3K27me3 demethylases and emerges as an important player in developmental processes. Although some evidence indicated the involvement of JMJD3 in osteoblast differentiation in vitro, its role as a whole in osteoblast differentiation and bone formation in vivo remains unknown. Here we showed that homozygous deletion of Jmjd3 resulted in severe delay of osteoblast differentiation and bone ossification in mice. By biochemical and genetical methods, we demonstrated that JMJD3 mediated RUNX2 transcriptional activity and cooperated with RUNX2 to promote osteoblast differentiation and bone formation in vivo. These results strongly demonstrated that JMJD3 is required for osteoblast differentiation and bone formation in mice.


Assuntos
Diferenciação Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Animais , Células Cultivadas , Camundongos , Camundongos Knockout
16.
Cell ; 161(7): 1576-1591, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26091038

RESUMO

The synthesis of type I collagen, the main component of bone matrix, precedes the expression of Runx2, the earliest determinant of osteoblast differentiation. We hypothesized that the energetic needs of osteoblasts might explain this apparent paradox. We show here that glucose, the main nutrient of osteoblasts, is transported in these cells through Glut1, whose expression precedes that of Runx2. Glucose uptake favors osteoblast differentiation by suppressing the AMPK-dependent proteasomal degradation of Runx2 and promotes bone formation by inhibiting another function of AMPK. While RUNX2 cannot induce osteoblast differentiation when glucose uptake is compromised, raising blood glucose levels restores collagen synthesis in Runx2-null osteoblasts and initiates bone formation in Runx2-deficient embryos. Moreover, RUNX2 favors Glut1 expression, and this feedforward regulation between RUNX2 and Glut1 determines the onset of osteoblast differentiation during development and the extent of bone formation throughout life. These results reveal an unexpected intricacy between bone and glucose metabolism.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glucose/metabolismo , Osteoblastos/metabolismo , Osteogênese , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Sequência de Aminoácidos , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Homeostase , Camundongos , Osteoblastos/citologia , Alinhamento de Sequência , Crânio/citologia
17.
Cell ; 160(1-2): 269-84, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25594183

RESUMO

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).


Assuntos
Osso e Ossos/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Intestino Delgado/citologia , Células-Tronco Mesenquimais/citologia , Animais , Cartilagem/metabolismo , Intestino Delgado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
18.
J Mol Cell Biol ; 7(1): 23-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25587042

RESUMO

JMJD3 (KDM6B) is an H3K27me3 demethylase and counteracts polycomb-mediated transcription repression. However, the function of JMJD3 in vivo is not well understood. Here we show that JMJD3 is highly expressed in cells of the chondrocyte lineage, especially in prehypertrophic and hypertrophic chondrocytes, during endochondral ossification. Homozygous deletion of Jmjd3 results in severely decreased proliferation and delayed hypertrophy of chondrocytes, and thereby marked retardation of endochondral ossification in mice. Genetically, JMJD3 associates with RUNX2 to promote proliferation and hypertrophy of chondrocytes. Biochemically, JMJD3 associates with and enhances RUNX2 activity by derepression of Runx2 and Ihh transcription through its H3K27me3 demethylase activity. These results demonstrate that JMJD3 is a key epigenetic regulator in the process of cartilage maturation during endochondral bone formation.


Assuntos
Condrócitos/metabolismo , Condrócitos/patologia , Histona Desmetilases com o Domínio Jumonji/genética , Osteogênese/genética , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Nanismo/genética , Nanismo/patologia , Expressão Gênica , Genótipo , Proteínas Hedgehog/genética , Humanos , Hipertrofia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Fenótipo , Ligação Proteica , Esqueleto , Transcrição Gênica
19.
Endocrinology ; 155(9): 3516-26, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24914939

RESUMO

Lactation is associated with significant alterations in both body composition and bone mass. Systemic and local skeletal factors such as receptor activator of nuclear factor κ-B ligand (RANKL), PTHrP, calcitonin, and estrogen are known to regulate bone remodeling during and after lactation. Fibroblast growth factor 21 (FGF-21) may function as an endocrine factor to regulate body composition changes during lactation by inducing gluconeogenesis and fatty acid oxidation. In this study, we hypothesized that the metabolic changes during lactation were due in part to increased circulating FGF-21, which in turn could accentuate bone loss. We longitudinally characterized body composition in C57BL/6J (B6) mice during (day 7 and day 21 of lactation) and after normal lactation (day 21 postlactation). At day 7 of lactation, areal bone density declined by 10% (P < .001), bone resorption increased (P < .0001), percent fat decreased by 20%, energy expenditure increased (P < .01), and markers of brown-like adipogenesis were suppressed in the inguinal depot and in preformed brown adipose tissue. At day 7 of lactation there was a 2.4-fold increase in serum FGF-21 vs baseline (P < .0001), a 8-fold increase in hepatic FGF-21 mRNA (P < .03), a 2-fold increase in undercarboxylated osteocalcin (Glu13 OCn) (P < .01), and enhanced insulin sensitivity. Recovery of total areal bone density was noted at day 21 of lactation, whereas the femoral trabecular bone volume fraction was still reduced (P < .01). Because FGF-21 levels rose rapidly at day 7 of lactation in B6 lactating mice, we next examined lactating mice with a deletion in the Fgf21 gene. Trabecular and cortical bone masses were maintained throughout lactation in FGF-21(-/-) mice, and pup growth was normal. Compared with lactating control mice, lactating FGF-21(-/-) mice exhibited an increase in bone formation, but no change in bone resorption. In conclusion, in addition to changes in calciotropic hormones, systemic FGF-21 plays a role in skeletal remodeling and changes in body composition during lactation in B6 mice.


Assuntos
Remodelação Óssea , Fatores de Crescimento de Fibroblastos/metabolismo , Lactação , Camundongos/metabolismo , Animais , Densidade Óssea , Reabsorção Óssea , Osso e Ossos/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fígado/metabolismo , Masculino , Camundongos/genética , Camundongos Endogâmicos C57BL , Gravidez
20.
J Cell Biol ; 205(6): 771-80, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24934156

RESUMO

Parathyroid hormone (PTH) and the sympathetic tone promote Rankl expression in osteoblasts and osteoclast differentiation by enhancing cyclic adenosine monophosphate production through an unidentified transcription factor for PTH and through ATF4 for the sympathetic tone. How two extracellular cues using the same second messenger in the same cell elicit different transcriptional events is unknown. In this paper, we show that PTH favors Rankl expression by triggering the ubiquitination of HDAC4, a class II histone deacetylase, via Smurf2. HDAC4 degradation releases MEF2c, which transactivates the Rankl promoter. Conversely, sympathetic signaling in osteoblasts favors the accumulation of HDAC4 in the nucleus and its association with ATF4. In this context, HDAC4 increases Rankl expression. Because of its ability to differentially connect two extracellular cues to the genome of osteoblasts, HDAC4 is a critical regulator of osteoclast differentiation.


Assuntos
Histona Desacetilases/fisiologia , Osteoblastos/metabolismo , Hormônio Paratireóideo/metabolismo , Transdução de Sinais , Fator 4 Ativador da Transcrição/metabolismo , Animais , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Fatores de Transcrição MEF2/metabolismo , Camundongos , Modelos Biológicos , Ligante RANK/genética , Ligante RANK/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA