Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(694): eabn9674, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134154

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is classified into two key subtypes, classical and basal, with basal PDAC predicting worse survival. Using in vitro drug assays, genetic manipulation experiments, and in vivo drug studies in human patient-derived xenografts (PDXs) of PDAC, we found that basal PDACs were uniquely sensitive to transcriptional inhibition by targeting cyclin-dependent kinase 7 (CDK7) and CDK9, and this sensitivity was recapitulated in the basal subtype of breast cancer. We showed in cell lines, PDXs, and publicly available patient datasets that basal PDAC was characterized by inactivation of the integrated stress response (ISR), which leads to a higher rate of global mRNA translation. Moreover, we identified the histone deacetylase sirtuin 6 (SIRT6) as a critical regulator of a constitutively active ISR. Using expression analysis, polysome sequencing, immunofluorescence, and cycloheximide chase experiments, we found that SIRT6 regulated protein stability by binding activating transcription factor 4 (ATF4) in nuclear speckles and protecting it from proteasomal degradation. In human PDAC cell lines and organoids as well as in murine PDAC genetically engineered mouse models where SIRT6 was deleted or down-regulated, we demonstrated that SIRT6 loss both defined the basal PDAC subtype and led to reduced ATF4 protein stability and a nonfunctional ISR, causing a marked vulnerability to CDK7 and CDK9 inhibitors. Thus, we have uncovered an important mechanism regulating a stress-induced transcriptional program that may be exploited with targeted therapies in particularly aggressive PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sirtuínas , Humanos , Camundongos , Animais , Quinases Ciclina-Dependentes , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Sirtuínas/genética , Sirtuínas/uso terapêutico , Neoplasias Pancreáticas
2.
Genetics ; 203(4): 1601-11, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27280691

RESUMO

Human cancer genome studies have identified the SWI/SNF chromatin remodeling complex member ARID1A as one of the most frequently altered genes in several tumor types. Its role as an ovarian tumor suppressor has been supported in compound knockout mice. Here, we provide genetic and functional evidence that Arid1a is a bona fide mammary tumor suppressor, using the Chromosome aberrations occurring spontaneously 3 (Chaos3) mouse model of sporadic breast cancer. About 70% of mammary tumors that formed in these mice contained a spontaneous deletion removing all or part of one Arid1a allele. Restoration of Arid1a expression in a Chaos3 mammary tumor line with low Arid1a levels greatly impaired its ability to form tumors following injection into cleared mammary glands, indicating that ARID1A insufficiency is crucial for maintenance of these Trp53-proficient tumors. Transcriptome analysis of tumor cells before and after reintroduction of Arid1a expression revealed alterations in growth signaling and cell-cycle checkpoint pathways, in particular the activation of the TRP53 pathway. Consistent with the latter, Arid1a reexpression in tumor cells led to increased p21 (Cdkn1a) expression and dramatic accumulation of cells in G2 phase of the cell cycle. These results not only provide in vivo evidence for a tumor suppressive and/or maintenance role in breast cancer, but also indicate a potential opportunity for therapeutic intervention in ARID1A-deficient human breast cancer subtypes that retain one intact copy of the gene and also maintain wild-type TRP53 activity.


Assuntos
Neoplasias da Mama/genética , Cromatina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ligação a DNA/genética , Neoplasias Mamárias Animais/genética , Proteínas Nucleares/genética , Animais , Neoplasias da Mama/patologia , Montagem e Desmontagem da Cromatina/genética , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Proteínas de Ligação a DNA/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Animais/patologia , Camundongos , Mutação , Proteínas Nucleares/biossíntese , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética
3.
Clin Cancer Res ; 18(8): 2360-73, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22261801

RESUMO

PURPOSE: Non-small cell lung cancers (NSCLC) comprise multiple distinct biologic groups with different prognoses. For example, patients with epithelial-like tumors have a better prognosis and exhibit greater sensitivity to inhibitors of the epidermal growth factor receptor (EGFR) pathway than patients with mesenchymal-like tumors. Here, we test the hypothesis that epithelial-like NSCLCs can be distinguished from mesenchymal-like NSCLCs on the basis of global DNA methylation patterns. EXPERIMENTAL DESIGN: To determine whether phenotypic subsets of NSCLCs can be defined on the basis of their DNA methylation patterns, we combined microfluidics-based gene expression analysis and genome-wide methylation profiling. We derived robust classifiers for both gene expression and methylation in cell lines and tested these classifiers in surgically resected NSCLC tumors. We validate our approach using quantitative reverse transcriptase PCR and methylation-specific PCR in formalin-fixed biopsies from patients with NSCLC who went on to fail front-line chemotherapy. RESULTS: We show that patterns of methylation divide NSCLCs into epithelial-like and mesenchymal-like subsets as defined by gene expression and that these signatures are similarly correlated in NSCLC cell lines and tumors. We identify multiple differentially methylated regions, including one in ERBB2 and one in ZEB2, whose methylation status is strongly associated with an epithelial phenotype in NSCLC cell lines, surgically resected tumors, and formalin-fixed biopsies from patients with NSCLC who went on to fail front-line chemotherapy. CONCLUSIONS: Our data show that patterns of DNA methylation can divide NSCLCs into two phenotypically distinct subtypes of tumors and provide proof of principle that differences in DNA methylation can be used as a platform for predictive biomarker discovery and development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/classificação , Carcinoma Pulmonar de Células não Pequenas/genética , Metilação de DNA/genética , Neoplasias Pulmonares/classificação , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Ilhas de CpG/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/genética , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Fenótipo , Prognóstico , Receptor ErbB-2/genética , Proteínas Repressoras/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA