Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioinform Biol Insights ; 17: 11779322231182054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377792

RESUMO

The increasing commercialization of new gene panels based on next-generation sequencing for clinical research has significantly improved our understanding of breast cancer genetics and has led to the discovery of new mutation variants. The study included 16 unselected Moroccan breast cancer patients tested with multi-gene panel (HEVA screen panel) using Illumina Miseq, followed by Sanger sequencing to validate the most relevant mutation. Mutational analysis revealed the presence of 13 mutations (11 single-nucleotide polymorphisms [SNPs] and 2 indels), and 6 of 11 identified SNPs were predicted as pathogenic. One of the 6 pathogenic mutations was c.7874G>C, a heterozygous SNP in HD-OB domain of BRCA2 gene, which led to the arginine to threonine change at codon 2625 of the protein. This work describes the first case of a patient with breast cancer harboring this pathogenic variant and analyzes its functional impact using molecular docking and molecular dynamics simulation. Further experimental investigations are needed to validate its pathogenicity and to verify its association with breast cancer.

2.
J Pers Med ; 13(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36983633

RESUMO

Breast cancer is one of the main global priorities in terms of public health. It remains the most frequent cancer in women and is the leading cause of their death. The human microbiome plays various roles in maintaining health by ensuring a dynamic balance with the host or in the appearance of various pathologies including breast cancer. In this study, we performed an analysis of bacterial signature differences between tumor and adjacent tissues of breast cancer patients in Morocco. Using 16S rRNA gene sequencing, we observed that adjacent tissue contained a much higher percentage of the Gammaproteobacteria class (35.7%) while tumor tissue was characterized by a higher percentage of Bacilli and Actinobacteria classes, with about 18.8% and 17.2% average abundance, respectively. Analysis of tumor subtype revealed enrichment of genus Sphingomonodas in TNBC while Sphingomonodas was predominant in HER2. The LEfSe and the genus level heatmap analysis revealed a higher abundance of the Rothia genus in tumor tissues. The identified microbial communities can therefore serve as potential biomarkers for prognosis and diagnosis, while also helping to develop new strategies for the treatment of breast cancer patients.

3.
PLoS One ; 15(11): e0240345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33170902

RESUMO

In late December 2019, an emerging viral infection COVID-19 was identified in Wuhan, China, and became a global pandemic. Characterization of the genetic variants of SARS-CoV-2 is crucial in following and evaluating it spread across countries. In this study, we collected and analyzed 3,067 SARS-CoV-2 genomes isolated from 55 countries during the first three months after the onset of this virus. Using comparative genomics analysis, we traced the profiles of the whole-genome mutations and compared the frequency of each mutation in the studied population. The accumulation of mutations during the epidemic period with their geographic locations was also monitored. The results showed 782 variants sites, of which 512 (65.47%) had a non-synonymous effect. Frequencies of mutated alleles revealed the presence of 68 recurrent mutations, including ten hotspot non-synonymous mutations with a prevalence higher than 0.10 in this population and distributed in six SARS-CoV-2 genes. The distribution of these recurrent mutations on the world map revealed that certain genotypes are specific to geographic locations. We also identified co-occurring mutations resulting in the presence of several haplotypes. Moreover, evolution over time has shown a mechanism of mutation co-accumulation which might affect the severity and spread of the SARS-CoV-2. The phylogentic analysis identified two major Clades C1 and C2 harboring mutations L3606F and G614D, respectively and both emerging for the first time in China. On the other hand, analysis of the selective pressure revealed the presence of negatively selected residues that could be taken into considerations as therapeutic targets. We have also created an inclusive unified database (http://covid-19.medbiotech.ma) that lists all of the genetic variants of the SARS-CoV-2 genomes found in this study with phylogeographic analysis around the world.


Assuntos
Betacoronavirus/genética , Variação Genética , Genoma Viral , Betacoronavirus/classificação , Betacoronavirus/isolamento & purificação , COVID-19 , China , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Evolução Molecular , Humanos , Pandemias , Filogenia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Poliproteínas , Estrutura Terciária de Proteína , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais/química , Proteínas Virais/genética
4.
Pathogens ; 9(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050463

RESUMO

The COVID-19 pandemic has been ongoing since its onset in late November 2019 in Wuhan, China. Understanding and monitoring the genetic evolution of the virus, its geographical characteristics, and its stability are particularly important for controlling the spread of the disease and especially for the development of a universal vaccine covering all circulating strains. From this perspective, we analyzed 30,983 complete SARS-CoV-2 genomes from 79 countries located in the six continents and collected from 24 December 2019, to 13 May 2020, according to the GISAID database. Our analysis revealed the presence of 3206 variant sites, with a uniform distribution of mutation types in different geographic areas. Remarkably, a low frequency of recurrent mutations has been observed; only 169 mutations (5.27%) had a prevalence greater than 1% of genomes. Nevertheless, fourteen non-synonymous hotspot mutations (>10%) have been identified at different locations along the viral genome; eight in ORF1ab polyprotein (in nsp2, nsp3, transmembrane domain, RdRp, helicase, exonuclease, and endoribonuclease), three in nucleocapsid protein, and one in each of three proteins: Spike, ORF3a, and ORF8. Moreover, 36 non-synonymous mutations were identified in the receptor-binding domain (RBD) of the spike protein with a low prevalence (<1%) across all genomes, of which only four could potentially enhance the binding of the SARS-CoV-2 spike protein to the human ACE2 receptor. These results along with intra-genomic divergence of SARS-CoV-2 could indicate that unlike the influenza virus or HIV viruses, SARS-CoV-2 has a low mutation rate which makes the development of an effective global vaccine very likely.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA