Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36135891

RESUMO

Extracellular vesicles (EVs) are in the scientific spotlight due to their potential application in the medical field, ranging from medical diagnosis to therapy. These applications rely on EV stability during isolation and purification-ideally, these steps should not impact vesicle integrity. In this context, we investigated EV stability and particle numbers via nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) and nanoparticle tracking analysis (NTA). In nES GEMMA, native, surface-dry analytes are separated in the gas-phase according to the particle size. Besides information on size and particle heterogeneity, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU, 18 October 2011). Likewise, and in contrast to NTA, nES GEMMA enables detection of co-purified proteins. On the other hand, NTA, yielding data on hydrodynamic size distributions, is able to relate particle concentrations, omitting electrolyte exchange (and resulting EV loss), which is prerequisite for nES GEMMA. Focusing on EVs of different origin, we compared vesicles concentrations and stability, especially after electrolyte exchange and size exclusion chromatography (SEC). Co-isolated proteins were detected in most samples, and the vesicle amount varied in dependence on the EV source. We found that depletion of co-purified proteins was achievable via SEC, but was associated with a loss of EVs and-most importantly-with decreased vesicle stability, as detected via a reduced nES GEMMA measurement repeatability. Ultimately, we propose the repeatability of nES GEMMA to yield information on EV stability, and, as a result, we propose that nES GEMMA can yield additional valuable information in EV research.

2.
Anal Bioanal Chem ; 413(30): 7341-7352, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34622320

RESUMO

The emerging role of extracellular vesicles (EVs) as biomarkers and their envisioned therapeutic use require advanced techniques for their detailed characterization. In this context, we investigated gas-phase electrophoresis on a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA, aka nES differential mobility analyzer, nES DMA) as an alternative to standard analytical techniques. In gas-phase electrophoresis, single-charged, surface-dry, native, polydisperse, and aerosolized analytes, e.g., proteins or bio-nanoparticles, are separated according to their electrophoretic mobility diameter, i.e., globular size. Subsequently, monodisperse particles are counted after a nucleation step in a supersaturated atmosphere as they pass a focused laser beam. Hence, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU from October 18th, 2011). Smaller sample constituents (e.g., co-purified proteins) can be detected next to larger ones (e.g., vesicles). Focusing on platelet-derived EVs, we compared different vesicle isolation techniques. In all cases, nanoparticle tracking analysis (NTA) confirmed the presence of vesicles. However, nES GEMMA often revealed a significant co-purification of proteins from the sample matrix, precluding gas-phase electrophoresis of less-diluted samples containing higher vesicle concentrations. Therefore, mainly peaks in the protein size range were detected. Mass spectrometry revealed that these main contaminants belonged to the group of globulins and coagulation-related components. An additional size exclusion chromatography (SEC) step enabled the depletion of co-purified, proteinaceous matrix components, while a label-free quantitative proteomics approach revealed no significant differences in the detected EV core proteome. Hence, the future in-depth analysis of EVs via gas-phase electrophoresis appears feasible. Platelet-derived extracellular vesicles (EVs)with/without additional size exclusion chromatographic (SEC) purification were subjected to nanoparticle tracking analysis (NTA) and gas-phase electrophoresis (nES GEMMA). The latter revealed presence of co-purified proteins, targetable via mass spectrometry (MS). MS also revealed that SEC did not influence EV protein content. To conclude, nES GEMMA is a valuable tool for quality control of EV-containing samples under native conditions allowing for detection of co-purified proteins from complex matrices.


Assuntos
Ensaio de Desvio de Mobilidade Eletroforética/métodos , Vesículas Extracelulares/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Gases , Humanos , Espectrometria de Massas por Ionização por Electrospray/instrumentação
3.
Nutrients ; 12(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877961

RESUMO

Inflammatory bowel disease increases the odds of developing colitis-associated cancer. We hypothesized that Western-style diet (WD) aggravates azoxymethane (AOM)/dextran sulfate sodium salt (DSS)-induced colitis-associated tumorigenesis and that switching to the standard AIN93G diet will ameliorate disease symptoms even after cancer initiation. Female BALB/c mice received either WD (WD group) or standard AIN93G diet (AIN group) for the whole experimental period. After five weeks, the mice received 12.5 mg/kg AOM intraperitoneally, followed by three DSS cycles. In one group of mice, the WD was switched to AIN93G the day before starting the first DSS cycle (WD/AIN group). Feeding the WD during the whole experimental period aggravated colitis symptoms, shortened the colon (p < 0.05), changed microbiota composition and increased tumor promotion. On molecular level, the WD reduced proliferation (p < 0.05) and increased expression of the vitamin D catabolizing enzyme Cyp24a1 (p < 0.001). The switch to the AIN93G diet ameliorated this effect, reflected by longer colons, fewer (p < 0.05) and smaller (p < 0.01) aberrant colonic crypt foci, comparable with the AIN group. Our results show that switching to a healthy diet, even after cancer initiation is able to revert the deleterious effect of the WD and could be an effective preventive strategy to reduce colitis symptoms and prevent tumorigenesis.


Assuntos
Colite/induzido quimicamente , Colite/complicações , Neoplasias Colorretais/prevenção & controle , Dieta Saudável , Dieta Ocidental/efeitos adversos , Focos de Criptas Aberrantes/patologia , Animais , Azoximetano/administração & dosagem , Colo/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Sulfato de Dextrana/administração & dosagem , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal/fisiologia , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Vitamina D/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA