Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 30(10): 2068-2077, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38530160

RESUMO

PURPOSE: High-grade gliomas (HGG) carry a poor prognosis, with glioblastoma accounting for almost 50% of primary brain malignancies in the elderly. Unfortunately, despite the use of multiple treatment modalities, the prognosis remains poor in this population. Our preclinical studies suggest that the presence of aromatase expression, encoded by CYP19A1, is significantly upregulated in HGGs. Remarkably, we find that letrozole (LTZ), an FDA-approved aromatase inhibitor, has marked activity against HGGs. PATIENTS AND METHODS: We conducted a phase 0/I single-center clinical trial (NCT03122197) to assess the tumoral availability, pharmacokinetics (PK), safety, and tolerability of LTZ in recurrent patients with HGG. Planned dose cohorts included 2.5, 5, 10, 12.5, 15, 17.5, and 20 mg of LTZ administered daily pre- and postsurgery or biopsy. Tumor samples were assayed for LTZ content and relevant biomarkers. The recommended phase 2 dose (R2PD) was determined as the dose that resulted in predicted steady-state tumoral extracellular fluid (ECF; Css,ecf) >2 µmol/L and did not result in ≥33% dose-limiting adverse events (AE) assessed using CTCAE v5.0. RESULTS: Twenty-one patients were enrolled. Common LTZ-related AEs included fatigue, nausea, musculoskeletal, anxiety, and dysphoric mood. No DLTs were observed. The 15 mg dose achieved a Css,ecf of 3.6 ± 0.59 µmol/L. LTZ caused dose-dependent inhibition of estradiol synthesis and modulated DNA damage pathways in tumor tissues as evident using RNA-sequencing analysis. CONCLUSIONS: On the basis of safety, brain tumoral PK, and mechanistic data, 15 mg daily is identified as the RP2D for future trials.


Assuntos
Neoplasias Encefálicas , Glioma , Letrozol , Gradação de Tumores , Recidiva Local de Neoplasia , Humanos , Letrozol/administração & dosagem , Letrozol/farmacocinética , Letrozol/uso terapêutico , Letrozol/efeitos adversos , Feminino , Glioma/tratamento farmacológico , Glioma/patologia , Pessoa de Meia-Idade , Masculino , Idoso , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética
2.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542190

RESUMO

A glioblastoma (GBM) is one of the most aggressive, infiltrative, and treatment-resistant malignancies of the central nervous system (CNS). The current standard of care for GBMs include maximally safe tumor resection, followed by concurrent adjuvant radiation treatment and chemotherapy with the DNA alkylating agent temozolomide (TMZ), which was approved by the FDA in 2005 based on a marginal increase (~2 months) in overall survival (OS) levels. This treatment approach, while initially successful in containing and treating GBM, almost invariably fails to prevent tumor recurrence. In addition to the limited therapeutic benefit, TMZ also causes debilitating adverse events (AEs) that significantly impact the quality of life of GBM patients. Some of the most common AEs include hematologic (e.g., thrombocytopenia, neutropenia, anemia) and non-hematologic (e.g., nausea, vomiting, constipation, dizziness) toxicities. Recurrent GBMs are often resistant to TMZ and other DNA-damaging agents. Thus, there is an urgent need to devise strategies to potentiate TMZ activity, to overcome drug resistance, and to reduce dose-dependent AEs. Here, we analyze major mechanisms of the TMZ resistance-mediated intracellular signaling activation of DNA repair pathways and the overexpression of drug transporters. We review some of the approaches investigated to counteract these mechanisms of resistance to TMZ, including the use of chemosensitizers and drug delivery strategies to enhance tumoral drug exposure.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/efeitos adversos , Qualidade de Vida , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , DNA/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
3.
Cancer Chemother Pharmacol ; 90(4): 345-356, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050497

RESUMO

PURPOSE: The DNA alkylating agent temozolomide (TMZ), is the first-line therapeutic for the treatment of glioblastoma (GBM). However, its use is confounded by the occurrence of drug resistance and debilitating adverse effects. Previously, we observed that letrozole (LTZ), an aromatase inhibitor, has potent activity against GBM in pre-clinical models. Here, we evaluated the effect of LTZ on TMZ activity against patient-derived GBM cells. METHODS: Employing patient-derived G76 (TMZ-sensitive), BT142 (TMZ-intermediately sensitive) and G43 and G75 (TMZ-resistant) GBM lines we assessed the influence of LTZ and TMZ on cell viability and neurosphere growth. Combination Index (CI) analysis was performed to gain quantitative insights of this interaction. We then assessed DNA damaging effects by conducting flow-cytometric analysis of Ë H2A.X formation and induction of apoptotic signaling pathways (caspase3/7 activity). The effects of adding estradiol on LTZ-induced cytotoxicity and DNA damage were also evaluated. RESULTS: Co-treatment with LTZ at a non-cytotoxic concentration (40 nM) reduced TMZ IC50 by 8, 37, 240 and 640 folds in G76, BT-142, G43 and G75 cells, respectively. The interaction was deemed to be synergistic based on CI analysis. LTZ co-treatment also significantly increased DNA damaging effects of TMZ. Addition of estradiol abrogated these LTZ effects. CONCLUSIONS: LTZ increases DNA damage and synergistically enhances TMZ activity in TMZ sensitive and TMZ-resistant GBM lines. These effects are abrogated by the addition of exogenous estradiol underscoring that the observed effects of LTZ may be mediated by estrogen deprivation. Our study provides a strong rationale for investigating the clinical potential of combining LTZ and TMZ for GBM therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Inibidores da Aromatase/farmacologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Estradiol/farmacologia , Glioblastoma/metabolismo , Humanos , Letrozol/farmacologia , Letrozol/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico
4.
Invest New Drugs ; 40(5): 944-952, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35802287

RESUMO

PURPOSE: Emerging evidence suggests that 5' Adenosine Monophosphate-Activated Protein Kinase (AMPK), a key regulator of cellular bioenergetics, is a novel target for the treatment of glioblastoma (GBM), a lethal brain tumor. SBI-0206965, an aminopyrimidine derivative, is a potent AMPK inhibitor being investigated for the treatment of GBM. Here we characterized the systemic and brain pharmacokinetics (PK) and hepatic metabolism of SBI-0206965. METHODS: We performed intracerebral microdialysis to determine brain partitioning of SBI-0206965 in jugular vein cannulated rats. We assessed systemic PK of SBI-0206965 in rats and C57BL/6 mice following oral administration. Employing human, mouse, and rat liver microsomes we characterized the metabolism of SBI-0206965. RESULTS: SBI-0206965 is quickly absorbed, achieving plasma and brain extracellular fluid (ECF) peak levels within 0.25 - 0.65 h. Based on the ratio of Cmax and AUC in brain ECF to plasma (corrected for protein binding), brain partitioning is ~ 0.6-0.9 in rats. However, the compound has a short elimination half-life (1-2 h) and low relative oral bioavailability (~ 0.15). The estimated in-vitro hepatic intrinsic clearance of SBI-0206965 in mouse, rat and human was 325, 76 and 68 mL/min/kg, respectively. SBI-0206965 metabolites included desmethylated products, and the metabolism was strongly inhibited by ketoconazole, a CYP3A inhibitor. CONCLUSION: SBI-0206965 has adequate brain permeability but low relative oral bioavailability which may be due to rapid hepatic metabolism, likely catalyzed by CYP3A enzymes. Our observations will facilitate further development of SBI-0206965, and/or other structurally related molecules, for the treatment of GBM and other brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Benzamidas , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Drogas em Investigação , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pirimidinas , Ratos
5.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669867

RESUMO

RIDR-PI-103 is a novel reactive oxygen species (ROS)-induced drug release prodrug with a self-cyclizing moiety linked to a pan-PI3K inhibitor (PI-103). Under high ROS, PI-103 is released in a controlled manner to inhibit PI3K. The efficacy and bioavailability of RIDR-PI-103 in breast cancer remains unexplored. Cell viability of RIDR-PI-103 was assessed on breast cancer cells (MDA-MB-231, MDA-MB-361 and MDA-MB-453), non-tumorigenic MCF10A and fibroblasts. Matrigel colony formation, cell proliferation and migration assays examined the migratory properties of breast cancers upon treatment with RIDR-PI-103 and doxorubicin. Western blots determined the effect of doxorubicin ± RIDR-PI-103 on AKT activation and DNA damage response. Pharmacokinetic (PK) studies using C57BL/6J mice determined systemic exposure (plasma concentrations and overall area under the curve) and T1/2 of RIDR-PI-103. MDA-MB-453, MDA-MB-231 and MDA-MB-361 cells were sensitive to RIDR-PI-103 vs. MCF10A and normal fibroblast. Combination of doxorubicin and RIDR-PI-103 suppressed cancer cell growth and proliferation. Doxorubicin with RIDR-PI-103 inhibited p-AktS473, upregulated p-CHK1/2 and p-P53. PK studies showed that ~200 ng/mL (0.43 µM) RIDR-PI-103 is achievable in mice plasma with an initial dose of 20 mg/kg and a 10 h T1/2. (4) The prodrug RIDR-PI-103 could be a potential therapeutic for treatment of breast cancer patients.


Assuntos
Antraciclinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Dano ao DNA , Fosfatidilinositol 3-Quinases/metabolismo , Pró-Fármacos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Antraciclinas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Combinação de Medicamentos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Furanos/farmacocinética , Furanos/farmacologia , Furanos/uso terapêutico , Humanos , Laminina , Camundongos Endogâmicos C57BL , Pró-Fármacos/farmacologia , Proteoglicanas , Piridinas/farmacocinética , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA