Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
iScience ; 27(6): 109878, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799556

RESUMO

Adeno-associated virus (AAV) vectors are potential tools for cell-type-selective gene delivery to the central nervous system. Although cell-type-specific enhancers and promoters have been identified for AAV systems, there is limited information regarding the effects of AAV genomic components on the selectivity and efficiency of gene expression. Here, we offer an alternative strategy to provide specific and efficient gene delivery to a targeted neuronal population by optimizing recombinant AAV genomic components, named TAREGET (TransActivator-Regulated Enhanced Gene Expression within Targeted neuronal populations). We established this strategy in oxytocinergic neurons and showed that the TAREGET enabled sufficient gene expression to label long-projecting axons in wild-type mice. Its application to other cell types, including serotonergic and dopaminergic neurons, was also demonstrated. These results demonstrate that optimization of AAV expression cassettes can improve the specificity and efficiency of cell-type-specific gene expression and that TAREGET can renew previously established cell-type-specific promoters with improved performance.

2.
J Control Release ; 354: 35-44, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586673

RESUMO

PEGylated liposomes (PEG-liposomes) are a promising drug delivery vehicle for tumor targeting because of their efficient tumor disposition profiles via the enhanced permeability and retention (EPR) effect. However, tumor targeting of PEG-liposomes, particularly their delivery inside the tumors, is often disturbed by physical barriers in the tumor, including tumor cells themselves, extracellular matrices, and interstitial pressures. In this study, B16 melanoma tumor-bearing mice were injected intravenously with oncolytic reovirus before administration of PEG-liposomes to enhance PEG-liposomes' tumor disposition. Three days after reovirus administration, significant expression of reovirus sigma 3 protein, elevation of apoptosis-related gene expression, and activation of caspase 3 in the tumors were found. Apoptotic cells were found inside the tumors. These data indicated that reovirus efficiently replicated in the tumors and induced apoptosis of tumor cells. The tumor disposition levels of PEG-liposomes were approximately doubled by reovirus pre-administration, compared with a PBS-pretreated group. PEG-liposomes were widely distributed in the tumors of reovirus-pretreated mice, whereas in the PBS-pretreated group, PEG-liposomes were found mainly around or inside the blood vessels in the tumors. Pre-treatment with reovirus also improved the tumor accumulation of PEG-liposomes in human pancreatic BxPC-3 tumors. 3D imaging analysis of whole BxPC-3 tumors demonstrated that pretreatment with reovirus led to the enhancement of PEG-liposome accumulation inside the tumors. Combination treatment with reovirus and paclitaxel-loaded PEG-liposomes (PTX-PEG-liposomes) significantly suppressed B16 tumor growth. These results provide important information for clinical use of combination therapy of reovirus and nanoparticle-based drug delivery system (DDS).


Assuntos
Lipossomos , Melanoma Experimental , Camundongos , Humanos , Animais , Lipossomos/uso terapêutico , Paclitaxel/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Terapia Combinada , Linhagem Celular Tumoral , Polietilenoglicóis/uso terapêutico
3.
Nat Commun ; 13(1): 7913, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585411

RESUMO

Feeding behavior is adaptively regulated by external and internal environment, such that feeding is suppressed when animals experience pain, sickness, or fear. While the lateral parabrachial nucleus (lPB) plays key roles in nociception and stress, neuronal pathways involved in feeding suppression induced by fear are not fully explored. Here, we investigate the parasubthalamic nucleus (PSTN), located in the lateral hypothalamus and critically involved in feeding behaviors, as a target of lPB projection neurons. Optogenetic activation of lPB-PSTN terminals in male mice promote avoidance behaviors, aversive learning, and suppressed feeding. Inactivation of the PSTN and lPB-PSTN pathway reduces fear-induced feeding suppression. Activation of PSTN neurons expressing pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide enriched in the PSTN, is sufficient for inducing avoidance behaviors and feeding suppression. Blockade of PACAP receptors impaires aversive learning induced by lPB-PSTN photomanipulation. These findings indicate that lPB-PSTN pathway plays a pivotal role in fear-induced feeding suppression.


Assuntos
Núcleos Parabraquiais , Camundongos , Masculino , Animais , Núcleos Parabraquiais/metabolismo , Medo , Dor , Região Hipotalâmica Lateral/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
4.
Virol J ; 17(1): 149, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032637

RESUMO

BACKGROUND: In plants, the RNA silencing system functions as an antiviral defense mechanism following its induction with virus-derived double-stranded RNAs. This occurs through the action of RNA silencing components, including Dicer-like (DCL) nucleases, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDR). Plants encode multiple AGOs, DCLs, and RDRs. The functions of these components have been mainly examined in Arabidopsis thaliana and Nicotiana benthamiana. In this study, we investigated the roles of DCL2, DCL4, AGO2, AGO3 and RDR6 in tomato responses to viral infection. For this purpose, we used transgenic tomato plants (Solanum lycopersicum cv. Moneymaker), in which the expression of these genes were suppressed by double-stranded RNA-mediated RNA silencing. METHODS: We previously created multiple DCL (i.e., DCL2 and DCL4) (hpDCL2.4) and RDR6 (hpRDR6) knockdown transgenic tomato plants and here additionally did multiple AGO (i.e., AGO2 and AGO3) knockdown plants (hpAGO2.3), in which double-stranded RNAs cognate to these genes were expressed to induce RNA silencing to them. Potato virus X (PVX) and Y (PVY) were inoculated onto these transgenic tomato plants, and the reactions of these plants to the viruses were investigated. In addition to observation of symptoms, viral coat protein and genomic RNA were detected by western and northern blotting and reverse transcription-polymerase chain reaction (RT-PCR). Host mRNA levels were investigated by quantitative RT-PCR. RESULTS: Following inoculation with PVX, hpDCL2.4 plants developed a more severe systemic mosaic with leaf curling compared with the other inoculated plants. Systemic necrosis was also observed in hpAGO2.3 plants. Despite the difference in the severity of symptoms, the accumulation of PVX coat protein (CP) and genomic RNA in the uninoculated upper leaves was not obviously different among hpDCL2.4, hpRDR6, and hpAGO2.3 plants and the empty vector-transformed plants. Moneymaker tomato plants were asymptomatic after infection with PVY. However, hpDCL2.4 plants inoculated with PVY developed symptoms, including leaf curling. Consistently, PVY CP was detected in the uninoculated symptomatic upper leaves of hpDCL2.4 plants through western blotting. Of note, PVY CP was rarely detected in other asymptomatic transgenic or wild-type plants. However, PVY was detected in the uninoculated upper leaves of all the inoculated plants using reverse transcription-polymerase chain reactions. These findings indicated that PVY systemically infected asymptomatic Moneymaker tomato plants at a low level (i.e., no detection of CP via western blotting). CONCLUSION: Our results indicate that the tomato cultivar Moneymaker is susceptible to PVX and shows mild mosaic symptoms, whereas it is tolerant and asymptomatic to systemic PVY infection with a low virus titer. In contrast, in hpDCL2.4 plants, PVX-induced symptoms became more severe and PVY infection caused symptoms. These results indicate that DCL2, DCL4, or both contribute to tolerance to infection with PVX and PVY. PVY CP and genomic RNA accumulated to a greater extent in DCL2.4-knockdown plants. Hence, the contribution of these DCLs to tolerance to infection with PVY is at least partly attributed to their roles in anti-viral RNA silencing, which controls the multiplication of PVY in tomato plants. The necrotic symptoms observed in the PVX-infected hpAGO2.3 plants suggest that AGO2, AGO3 or both are also distinctly involved in tolerance to infection with PVX.


Assuntos
Doenças das Plantas/virologia , Potexvirus/genética , Potyvirus/genética , Interferência de RNA , RNA Viral/genética , Solanum lycopersicum/virologia , Proteínas Argonautas/genética , Proteínas do Capsídeo/genética , Folhas de Planta/virologia , RNA Polimerase Dependente de RNA/genética , Ribonuclease III/genética , Solanum tuberosum/virologia
5.
Commun Biol ; 3(1): 557, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033338

RESUMO

We previously showed that mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) exhibit attenuated light-induced phase shift. To explore the underlying mechanisms, we performed gene expression analysis of laser capture microdissected suprachiasmatic nuclei (SCNs) and found that lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is involved in the impaired response to light stimulation in the late subjective night in PACAP-deficient mice. L-PGDS-deficient mice also showed impaired light-induced phase advance, but normal phase delay and nonvisual light responses. Then, we examined the receptors involved in the response and observed that mice deficient for type 2 PGD2 receptor DP2/CRTH2 (chemoattractant receptor homologous molecule expressed on Th2 cells) show impaired light-induced phase advance. Concordant results were observed using the selective DP2/CRTH2 antagonist CAY10471. These results indicate that L-PGDS is involved in a mechanism of light-induced phase advance via DP2/CRTH2 signaling.


Assuntos
Ritmo Circadiano/fisiologia , Oxirredutases Intramoleculares/fisiologia , Lipocalinas/fisiologia , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Genes/genética , Genes/fisiologia , Hibridização In Situ , Oxirredutases Intramoleculares/metabolismo , Luz , Lipocalinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Núcleo Supraquiasmático/metabolismo
6.
PLoS One ; 15(7): e0236481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32716919

RESUMO

RNA-dependent RNA polymerase 6 (RDR6) is one of the key factors in plant defense responses and suppresses virus or viroid invasion into shoot apical meristem (SAM) in Nicotiana benthamiana. To evaluate the role of Solanum lycopersicum (Sl) RDR6 upon viroid infection, SlRDR6-suppressed (SlRDR6i) 'Moneymaker' tomatoes were generated by RNA interference and inoculated with intermediate or lethal strain of potato spindle tuber viroid (PSTVd). Suppression of SlRDR6 did not change disease symptoms of both PSTVd strains in 'Moneymaker' tomatoes. Analysis of PSTVd distribution in shoot apices by in situ hybridization revealed that both PSTVd strains similarly invade the basal part but not apical part including pluripotent stem cells of SAM in SlRDR6i plants at a low rate unlike a previous report in N. benthamiana. In addition, unexpectedly, amount of PSTVd accumulation was apparently lower in SlRDR6i plants than in control tomatoes transformed with empty cassette in early infection especially in the lethal strain. Meanwhile, SlRDR6 suppression did not affect the seed transmission rates of PSTVd. These results indicate that RDR6 generally suppresses PSTVd invasion into SAM in plants, while suppression of RDR6 does not necessarily elevate amount of PSTVd accumulation. Additionally, our results suggest that host factors such as RDR1 other than RDR6 may also be involved in the protection of SAM including pluripotent stem cells from PSTVd invasion and effective RNA silencing causing the decrease of PSTVd accumulation during early infection in tomato plants.


Assuntos
Meristema/citologia , Meristema/virologia , Proteínas de Plantas/metabolismo , Células-Tronco Pluripotentes/virologia , RNA Polimerase Dependente de RNA/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/virologia , Viroides/patogenicidade , Regulação da Expressão Gênica de Plantas , Genoma Viral , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Viroides/isolamento & purificação
7.
Nat Commun ; 11(1): 859, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103003

RESUMO

Pogo transposable element derived with ZNF domain (POGZ) has been identified as one of the most recurrently de novo mutated genes in patients with neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), intellectual disability and White-Sutton syndrome; however, the neurobiological basis behind these disorders remains unknown. Here, we show that POGZ regulates neuronal development and that ASD-related de novo mutations impair neuronal development in the developing mouse brain and induced pluripotent cell lines from an ASD patient. We also develop the first mouse model heterozygous for a de novo POGZ mutation identified in a patient with ASD, and we identify ASD-like abnormalities in the mice. Importantly, social deficits can be treated by compensatory inhibition of elevated cell excitability in the mice. Our results provide insight into how de novo mutations on high-confidence ASD genes lead to impaired mature cortical network function, which underlies the cellular pathogenesis of NDDs, including ASD.


Assuntos
Transtorno Autístico/genética , Predisposição Genética para Doença/genética , Malformações do Desenvolvimento Cortical/genética , Mutação , Fenótipo , Transposases/genética , Adolescente , Animais , Comportamento Animal , Encéfalo/patologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Feminino , Edição de Genes , Técnicas de Silenciamento de Genes , Heterozigoto , Humanos , Deficiência Intelectual , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética , Neurogênese , Neurônios/metabolismo
8.
J Neurosci ; 39(22): 4208-4220, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30886013

RESUMO

Alterations in pituitary adenylate cyclase-activating polypeptide (PACAP), a multifunctional neuropeptide, and its receptors have been identified as risk factors for certain psychiatric disorders, including schizophrenia. Increasing evidence from human genetic and animal model studies suggest an association between various psychiatric disorders and altered dendritic spine morphology. In the present study, we investigated the role of exogenous and endogenous PACAP in spine formation and maturation. PACAP modified the density and morphology of PSD-95-positive spines in primary cultured hippocampal neurons. Notably, PACAP increased the levels of microRNA (miR)-132 and decreased expression of corresponding miR-132 target genes and protein expression of p250GAP, a miR-132 effector known to be involved in spine morphology regulation. In corroboration, PSD-95-positive spines were reduced in PACAP-deficient (PACAP-/-) mice versus WT mice. Golgi staining of hippocampal CA1 neurons revealed a reduced spine densities and atypical morphologies in the male PACAP-/- mice. Furthermore, viral miR-132 overexpression reversed the reduction in hippocampal spinal density in the male PACAP-/- mice. These results indicate that PACAP signaling plays a critical role in spine morphogenesis possibly via miR-132. We suggest that dysfunction of PACAP signaling may contribute to the pathogenesis of neuropsychiatric disorders, at least partly through its effects on spine formation.SIGNIFICANCE STATEMENT Pituitary adenylate cyclase-activating polypeptide (PACAP) signaling dysfunction and dendritic spine morphology alterations have recently been suggested as important pathophysiological mechanisms underlying several psychiatric and neurological disorders. In this study, we investigated whether PACAP regulates dendritic spine morphogenesis. In a combination of pharmacological and viral gain- and loss-of-function approaches in vitro and in vivo experiments, we found PACAP to increase the size and density of dendritic spines via miR-132 upregulation. Together, our data suggest that a dysfunction of PACAP signaling may contribute to the pathogenesis of neuropsychiatric disorders, at least partly through abnormal spine formation.


Assuntos
Espinhas Dendríticas/metabolismo , MicroRNAs/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfogênese/fisiologia , Neurogênese/fisiologia , Transdução de Sinais/fisiologia , Regulação para Cima
9.
PLoS One ; 13(5): e0196946, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29734363

RESUMO

A pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor, PAC1R, is coupled with multiple signal transduction pathways including stimulation of adenylate cyclase, phospholipase C and extracellular-signal regulated kinase (ERK)1/2. PAC1R has been shown to exert its long-lasting and potent signals via ß-arrestin1 and ß-arrestin2. However, the precise roles of the two ß-arrestin isoforms in PACAP-PAC1R signaling remain unclear. Here we examined the interaction between the two ß-arrestin isoforms and PAC1R, ß-arrestin-dependent PAC1R subcellular localization and ERK1/2 activation. Upon PACAP stimulation, although PAC1R similarly interacted with ß-arrestin1 and ß-arrestin2 in HEK293T cells, the complex of PAC1R and ß-arrestin2 was translocated from the cell surface into cytosol, but that of ß-arrestin1 remained in the cell surface regions in HeLa cells and mouse primary cultured neurons. Silencing of ß-arrestin2 blocked PACAP-induced PAC1R internalization and ERK1/2 phosphorylation, but silencing of ß-arrestin1 increased ERK1/2 phosphorylation. These results show that ß-arrestin1 and ß-arrestin2 exert differential actions on PAC1R internalization and PAC1R-dependent ERK1/2 activation, and suggest that the two ß-arrestin isoforms may be involved in fine and precise tuning of the PAC1R signaling pathways.


Assuntos
Isoformas de Proteínas/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , beta-Arrestina 1/genética , beta-Arrestina 2/genética , Adenilil Ciclases/genética , Animais , Células HEK293 , Humanos , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/genética , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Transporte Proteico/genética , Transdução de Sinais/genética , Fosfolipases Tipo C/genética
10.
PLoS One ; 11(8): e0161729, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27564864

RESUMO

In plants, it is possible to induce heritable transcriptional gene silencing (TGS) via RNA-directed DNA methylation (RdDM) using artificially synthesized small RNA (siRNA) homologous to the 5'-flanking region of the target gene. As the siRNA signal with a specific RNA determinant moves through plasmodesmata and sieve elements, we attempted to induce TGS of a transgene and an endogenous gene of potato (Solanum tuberosum) rootstock by grafting using siRNA produced in a tobacco (Nicotiana benthamiana) scion. Our results provide evidence that this system can induce TGS of target genes in tubers formed on potato rootstock. The TGS is maintained in the progeny tubers lacking the transported siRNAs. Our findings reveal that epigenome editing using mobile RNA has the potential to allow breeding of artificial sport cultivars in vegetative propagation crops.


Assuntos
Epigenômica , Inativação Gênica , Nicotiana/genética , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/genética , Solanum tuberosum/genética , Agricultura , Metilação de DNA , Genes de Plantas , Proteínas de Fluorescência Verde , Raízes de Plantas/genética , Tubérculos/metabolismo , Regiões Promotoras Genéticas
11.
J Pharmacol Sci ; 130(2): 51-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26908040

RESUMO

Dopamine (DA) has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208-243) and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ), accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.


Assuntos
Dopamina/análogos & derivados , Dopamina/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Microglia/metabolismo , Óxido Nítrico/metabolismo , Acetilcisteína/farmacologia , Animais , Células Cultivadas , Dopamina/metabolismo , Antagonistas de Dopamina , Sinergismo Farmacológico , Lipopolissacarídeos/farmacologia , Camundongos , Monofenol Mono-Oxigenase/farmacologia , Oxirredução/efeitos dos fármacos
12.
J Hum Genet ; 61(3): 199-206, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26582266

RESUMO

Autism spectrum disorder (ASD) is a complex group of clinically heterogeneous neurodevelopmental disorders with unclear etiology and pathogenesis. Genetic studies have identified numerous candidate genetic variants, including de novo mutated ASD-associated genes; however, the function of these de novo mutated genes remains unclear despite extensive bioinformatics resources. Accordingly, it is not easy to assign priorities to numerous candidate ASD-associated genes for further biological analysis. Here we developed a convenient system for identifying an experimental evidence-based annotation of candidate ASD-associated genes. We performed trio-based whole-exome sequencing in 30 sporadic cases of ASD and identified 37 genes with de novo single-nucleotide variations (SNVs). Among them, 5 of those 37 genes, POGZ, PLEKHA4, PCNX, PRKD2 and HERC1, have been previously reported as genes with de novo SNVs in ASD; and consultation with in silico databases showed that only HERC1 might be involved in neural function. To examine whether the identified gene products are involved in neural functions, we performed small hairpin RNA-based assays using neuroblastoma cell lines to assess neurite development. Knockdown of 8 out of the 14 examined genes significantly decreased neurite development (P<0.05, one-way analysis of variance), which was significantly higher than the number expected from gene ontology databases (P=0.010, Fisher's exact test). Our screening system may be valuable for identifying the neural functions of candidate ASD-associated genes for further analysis and a substantial portion of these genes with de novo SNVs might have roles in neuronal systems, although further detailed analysis might eliminate false positive genes from identified candidate ASD genes.


Assuntos
Transtorno do Espectro Autista/genética , Exoma , Neuritos , Análise de Sequência , Adulto , Animais , Linhagem Celular , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
13.
Sci Rep ; 5: 17949, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26656294

RESUMO

Previous attempts to develop RNAi-mediated viroid-resistant transgenic plants using nearly full-length Potato spindle tuber viroid (PSTVd) hairpin RNA (hpRNA) were successful; however unusual phenotypes resembling viroid infection occurred. Therefore, in the present work, transgenic Nicotiana benthamiana lines expressing both partial and truncated versions of PSTVd hpRNA were developed. Specifically, seven partial or truncated versions of PSTVd sequences were selected according to the hotspots of both PSTVd-sRNAs and functional domains of the PSTVd. A total of 21 transgenic lines Nicotiana benthamiana were developed under the control of either the CaMV-35S or the CoYMV promoters. All of the transgenic lines established here were monitored for the induction of phenotypic changes, for PSTVd-sRNA expression and for the resistance against PSTVd infection. Additionally, this study demonstrates the use of inverted repeat construct sequences as short as 26- to -49 nucleotides for both the efficient expression of the PSTVd-sRNA and the inhibition of PSTVd infection.


Assuntos
Doenças das Plantas/genética , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/genética , Viroides/fisiologia , Sequência de Bases , Sítios de Ligação , Resistência à Doença/genética , Expressão Gênica , Sequências Repetidas Invertidas , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , RNA Interferente Pequeno/química , RNA Viral/química
14.
PLoS One ; 10(3): e0121707, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826270

RESUMO

There is growing evidence and a consensus in the field that most pediatric brain tumors originate from stem cells, of which radial glial cells constitute a subtype. Here we show that orthotopic transplantation of human radial glial (RG) cells to the subventricular zone of the 3rd ventricle--but not to other transplantation sites--of the brain in immunocompromised NOD-SCID mice, gives rise to tumors that have the hallmarks of CNS primitive neuroectodermal tumors (PNETs). The resulting mouse model strikingly recapitulates the phenotype of PNETs. Importantly, the observed tumorigenic transformation was accompanied by aspects of an epithelial to mesenchymal transition (EMT)-like process. It is also noteworthy that the tumors are highly invasive, and that they effectively recruit mouse endothelial cells for angiogenesis. These results are significant for several reasons. First, they show that malignant transformation of radial glial cells can occur in the absence of specific mutations or inherited genomic alterations. Second, they demonstrate that the same radial glial cells may either give rise to brain tumors or differentiate normally depending upon the microenvironment of the specific region of the brain to which the cells are transplanted. In addition to providing a prospect for drug screening and development of new therapeutic strategies, the resulting mouse model of PNETs offers an unprecedented opportunity to identify the cancer driving molecular alterations and the microenvironmental factors that are responsible for committing otherwise normal radial glial cells to a malignant phenotype.


Assuntos
Transplante de Células , Tumores Neuroectodérmicos Primitivos/patologia , Neuroglia/citologia , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
15.
PLoS One ; 10(3): e0120526, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25807538

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts neurotrophic activities including modulation of synaptic plasticity and memory, hippocampal neurogenesis, and neuroprotection, most of which are shared with brain-derived neurotrophic factor (BDNF). Therefore, the aim of this study was to compare morphological effects of PACAP and BDNF on primary cultured hippocampal neurons. At days in vitro (DIV) 3, PACAP increased neurite length and number to similar levels by BDNF, but vasoactive intestinal polypeptide showed much lower effects. In addition, PACAP increased axon, but not dendrite, length, and soma size at DIV 3 similarly to BDNF. The PACAP antagonist PACAP6-38 completely blocked the PACAP-induced increase in axon, but not dendrite, length. Interestingly, the BDNF-induced increase in axon length was also inhibited by PACAP6-38, suggesting a mechanism involving PACAP signaling. K252a, a TrkB receptor inhibitor, inhibited axon outgrowth induced by PACAP and BDNF without affecting dendrite length. These results indicate that in primary cultured hippocampal neurons, PACAP shows morphological actions via its cognate receptor PAC1, stimulating neurite length and number, and soma size to a comparable extent as BDNF, and that the increase in total neurite length is ascribed to axon outgrowth.


Assuntos
Axônios/metabolismo , Axônios/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Células Cultivadas , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptor trkB/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Transdução de Sinais/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo
16.
Behav Brain Res ; 284: 131-7, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25698598

RESUMO

Depression is a complex neuropsychiatric disorder with an unclear molecular etiology. Inflammatory cytokines and molecular intermediates (including prostaglandins) are suggested to be involved in depression; however, the roles of prostaglandins and their respective receptors are largely unknown in depression. Using genetic and pharmacological approaches, we show here that chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2), a second receptor for prostaglandin D2 (PGD2), mediates depression-related behavior in mice. CRTH2-deficient (CRTH2(-/-)) mice showed antidepressant-like activity in a chronic corticosterone treatment-induced depression. Consistent with this observation, the pharmacological inhibition of CRTH2 via the clinically available drug ramatroban also rescued abnormal social interaction and depression-related behavior in well-established models, including chronic corticosterone-, lipopolysaccharide-, and tumor-induced pathologically relevant depression models. Importantly, chronic stress via corticosterone treatment increased mRNA levels in PGD2-producing enzymes, such as cyclooxygenase-2 and lipocalin-type PGD2 synthase, in the brain. Furthermore, the activity of the hippocampal noradrenergic system but not the dopaminergic or serotonergic systems was increased in CRTH2(-/-) mice. Together with the observation that untreated CRTH2(-/-) mice showed antidepressant-like activity in the forced swim test, these results provide evidence that central CRTH2-mediated signaling is critically involved in depression-related behavior.


Assuntos
Transtorno Depressivo/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Animais , Encéfalo/metabolismo , Carbazóis/farmacologia , Fármacos do Sistema Nervoso Central/farmacologia , Doença Crônica , Corticosterona , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Norepinefrina/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , RNA Mensageiro/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/genética , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/genética , Comportamento Social , Estresse Psicológico/metabolismo , Sulfonamidas/farmacologia
17.
Biochem Biophys Rep ; 2: 179-183, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29124161

RESUMO

In diabetes mellitus, pituitary adenylate cyclase-activating polypeptide (PACAP) has insulinotropic and glucose-lowering properties. We previously demonstrated that transgenic mice overexpressing PACAP in pancreatic ß-cells (PACAP-Tg) show attenuated pancreatic islet hyperplasia and hyperinsulinemia in type 2 diabetic models. To explore the underlying mechanisms, here we crossed PACAP-Tg mice with lethal yellow agouti (KKAy) diabetic mice, and performed gene chip analysis of laser capture microdissected pancreatic islets from four F1 offspring genotypes (wild-type, PACAP-Tg, KKAy, and PACAP-Tg:KKAy). We identified 1371 probes with >16-fold differences between at least one pair of genotypes, and classified the probes into five clusters with characteristic expression patterns. Gene ontology enrichment analysis showed that genes involved in the terms ribosome and intracellular organelles such as ribonucleoprotein complex, mitochondrion, and chromosome organization were significantly enriched in clusters characterized by up-regulated genes in PACAP-Tg:KKAy mice compared with KKAy mice. These results may provide insight into the mechanisms of diabetes that accompany islet hyperplasia and amelioration by PACAP.

18.
PLoS One ; 9(2): e89153, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586556

RESUMO

Accumulating evidence from human genetic studies implicates the pituitary adenylate cyclase-activating polypeptide (PACAP) gene as a risk factor for psychiatric disorders, including schizophrenia and stress-related diseases. Mice with homozygous disruption of the PACAP gene display profound behavioral and neurological abnormalities that are ameliorated with the atypical antipsychotic and dopamine D2 and serotonin (5-HT)2 antagonist risperidone and the 5-HT2 receptor antagonist ritanserin; however, the underlying mechanisms remain unknown. Here, we investigated if PACAP heterozygous mutant (PACAP(+/-)) mice, which appear behaviorally normal, are vulnerable to aversive stimuli. PACAP(+/-) mice were administered a 5-HT2 receptor agonist, (±)-2,5-dimethoxy-4-iodoamphetamine (DOI), a hallucinogenic drug, and their responses were compared with the littermate wild-type mice. After DOI injection, PACAP(+/-) mice showed increased head-twitch responses, while their behavior was normal after saline. DOI induced deficits in sensorimotor gating, as determined by prepulse inhibition, specifically in PACAP(+/-) mice. However, other 5-HT2 receptor-dependent responses, such as corticosterone release and hypothermia, were similarly observed in PACAP(+/-) and wild-type mice. c-Fos expression analysis, performed in various brain regions, revealed that the DOI-induced increase in the number of c-Fos-positive cells was more pronounced in 5-HT2A receptor-negative cells in the somatosensory cortex in PACAP(+/-) mice compared with wild-type mice. These results indicate that PACAP(+/-) mice exhibit specific vulnerability to DOI-induced deficits in cortical sensory function, such as exaggerated head-twitch responses and sensorimotor gating deficits. Our findings provide insight into the neural mechanisms underlying impaired behavioral responses in which 5-HT2 receptors are implicated.


Assuntos
Comportamento Animal/efeitos dos fármacos , Alucinógenos/farmacologia , Mutação , Neurônios/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Anfetaminas/farmacologia , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Mães , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
19.
J Neurosci ; 34(7): 2514-23, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24523542

RESUMO

Chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) is a second prostaglandin D2 receptor involved in mediating the allergic response; however, its central function is not yet known. Here, we demonstrate that central CRTH2 mediates emotional impairment. Lipopolysaccharide (LPS)-induced decreases in social interaction and novel exploratory behavior were observed in wild-type (CRTH2(+/+)) mice but not CRTH2-deficient (CRTH2(-/-)) mice, but both genotypes showed hypolocomotion and anorexia following LPS injection. Tumor (colon 26) inoculation, a more pathologically relevant model, induced decreases in social interaction and novel exploratory behavior in CRTH2(+/+), but not CRTH2(-/-) mice. In addition, the CRTH2 antagonists including clinically available ramatroban reversed impaired social interaction and novel exploratory behavior after either LPS or tumor inoculation in CRTH2(+/+) mice. Finally, LPS-induced c-Fos expression in the hypothalamic paraventricular nucleus (PVN) and central amygdala (CeA) was selectively abolished in CRTH2(-/-) mice. These results show that CRTH2 participates in LPS-induced emotional changes and activation in the PVN and CeA. Our study provides the first evidence that central CRTH2 regulates specific emotional behaviors, and that CRTH2 antagonism has potential as a therapeutic target for behavioral symptoms associated with tumors and infectious diseases.


Assuntos
Encéfalo/metabolismo , Comportamento de Doença/fisiologia , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Estresse Psicológico/metabolismo , Animais , Modelos Animais de Doenças , Imuno-Histoquímica , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias Experimentais/psicologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Leukoc Biol ; 95(2): 357-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24068730

RESUMO

Although the immune system may provide early protection against cancer, tumors may exploit the healing arm of the immune system to enhance their growth and metastasis. For example, myeloid derived suppressor cells (MDSCs) are thought to promote tumor growth by several mechanisms, including the suppression of T cell activity. It has been suggested that STAT3 activation in myeloid cells modulates multiple aspects of MDSC physiology, including their expansion and activity. Whereas most animal studies investigating tumor immunology have used tumor implants, we used transgenic mice (Smo*) that spontaneously develop medulloblastoma brain tumors to investigate the temporal accumulation of MDSCs within tumors and how myeloid STAT3 disruption affects MDSC and other immune cell types. We found distinct populations of MDSC in medulloblastoma tumors, with a high prevalence of CD11b(+)Ly6G(+)Ly6C(low/-) cells, described previously by others as G-MDSCs. These were found early in tumor development, in premalignant lesions located on the surface of the cerebellum of 28-day-old mice. In fully developed tumors, pSTAT3 was found in the majority of these cells. Conditional STAT3 gene disruption in myeloid cells resulted in an enhanced proinflammatory phenotype of macrophages in Smo* mice. Moreover, a significant reduction in the abundance of G-MDSCs and Tregs was observed within tumors along with an increased presence of CD4(+) and CD8(+) cells. Despite these alterations in immune cells induced by myeloid STAT3 disruption, we found no effect on tumor incidence in Smo* mice with this deletion.


Assuntos
Deleção de Genes , Marcação de Genes , Tolerância Imunológica , Meduloblastoma/imunologia , Meduloblastoma/patologia , Células Mieloides/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Inflamação/patologia , Masculino , Meduloblastoma/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/patologia , Neovascularização Patológica/patologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/imunologia , Receptor Smoothened , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA