Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892249

RESUMO

Mesenchymal stromal cell (MSC)-based advanced therapy medicinal products (ATMPs) are being tried in a vast range of clinical applications. These cells can be isolated from different donor tissues by using several methods, or they can even be derived from induced pluripotent stem cells or embryonic stem cells. However, ATMP heterogeneity may impact product identity and potency, and, consequently, clinical trial outcomes. In this review, we discuss these topics and the need to establish minimal criteria regarding the manufacturing of MSCs so that these innovative therapeutics may be better positioned to contribute to the advancement of regenerative medicine.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Medicina Regenerativa , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Medicina Regenerativa/métodos , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular
2.
EBioMedicine ; 103: 105125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640834

RESUMO

We review the evidence for the presence of stem/progenitor cells in the heart and the preclinical and clinical data using diverse cell types for the therapy of cardiac diseases. We highlight the failure of adult stem/progenitor cells to ameliorate heart function in most cardiac diseases, with the possible exception of refractory angina. The use of pluripotent stem cell-derived cardiomyocytes is analysed as a viable alternative therapeutic option but still needs further research at preclinical and clinical stages. We also discuss the use of direct reprogramming of cardiac fibroblasts into cardiomyocytes and the use of extracellular vesicles as therapeutic agents in ischemic and non-ischemic cardiac diseases. Finally, gene therapies and genome editing for the treatment of hereditary cardiac diseases, ablation of genes responsible for atherosclerotic disease, or modulation of gene expression in the heart are discussed.


Assuntos
Terapia Genética , Humanos , Terapia Genética/métodos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Cardiopatias/terapia , Cardiopatias/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Edição de Genes , Cardiologia/métodos , Transplante de Células-Tronco/métodos
3.
Front Pharmacol ; 12: 725084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867327

RESUMO

Radiation-induced liver disease (RILD) remains a major problem resulting from radiotherapy. In this scenario, immunotherapy with granulocyte colony-stimulating factor (G-CSF) arises as an attractive approach that might improve the injured liver. Here, we investigated G-CSF administration's impact before and after liver irradiation exposure using an association of alcohol consumption and local irradiation to induce liver disease model in C57BL/6 mice. Male and female mice were submitted to a previous alcohol-induced liver injury protocol with water containing 5% alcohol for 90 days. Then, the animals were treated with G-CSF (100 µg/kg/d) for 3 days before or after liver irradiation (18 Gy). At days 7, 30, and 60 post-radiation, non-invasive liver images were acquired by ultrasonography, magnetic resonance, and computed tomography. Biochemical and histological evaluations were performed to verify whether G-CSF could prevent liver tissue damage or reverse the acute liver injury. Our data showed that the treatment with G-CSF before irradiation effectively improved morphofunctional parameters caused by RILD, restoring histological arrangement, promoting liver regeneration, preserving normal organelles distribution, and glycogen granules. The amount of OV-6 and F4/80-positive cells increased, and α-SMA positive cells' presence was normalized. Additionally, prior G-CSF administration preserved serum biochemical parameters and increased the survival rates (100%). On the other hand, after irradiation, the treatment showed a slight improvement in survival rates (79%) and did not ameliorate RILD. Overall, our data suggest that G-CSF administration before radiation might be an immunotherapeutic alternative to radiotherapy planning to avoid RILD.

4.
Genet Mol Biol ; 44(3): e20200147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34496008

RESUMO

Induced pluripotent stem cells (iPSCs) are generated from adult cells that have been reprogrammed to pluripotency. However, in vitro cultivation and genetic reprogramming increase genetic instability, which could result in chromosomal abnormalities. Maintenance of genetic stability after reprogramming is required for possible experimental and clinical applications. The aim of this study was to analyze chromosomal alterations by using the G-banding karyotyping method applied to 97 samples from 38 iPSC cell lines generated from peripheral blood or Wharton's jelly. Samples from patients with long QT syndrome, Jervell and Lange-Nielsen syndrome and amyotrophic lateral sclerosis and from normal individuals revealed the following chromosomal alterations: acentric fragments, chromosomal fusions, premature centromere divisions, double minutes, radial figures, ring chromosomes, polyploidies, inversions and trisomies. An analysis of two samples generated from Wharton's jelly before and after reprogramming showed that abnormal clones can emerge or be selected and generate an altered lineage. IPSC lines may show clonal and nonclonal chromosomal aberrations in several passages (from P6 to P34), but these aberrations are more common in later passages. Many important chromosomal aberrations were detected, showing that G-banding is very useful for evaluating genetic instability with important repercussions for the application of iPSC lines.

5.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334068

RESUMO

Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the aim of this study was to evaluate the angiogenic properties of menstrual blood-derived mesenchymal stromal cells (mbMSC) in vitro and in vivo and compared to bmMSC. MSC's intrinsic angiogenic capacity was assessed by sprouting and migration assays. mbMSC presented higher invasion and longer sprouts in 3D culture. Additionally, both MSC-spheroids showed cells expressing CD31. mbMSC and bmMSC were able to migrate after scratch wound in vitro, nonetheless, only mbMSC demonstrated ability to engraft in the chick embryo, migrating to perivascular, perineural, and chondrogenic regions. In order to study the paracrine effects, mbMSC and bmMSC conditioned mediums were capable of stimulating HUVEC's tube-like formation and migration. Both cells expressed VEGF-A and FGF2. Meanwhile, PDGF-B was expressed exclusively in mbMSC. Our results indicated that mbMSC and bmMSC presented a promising angiogenic potential. However, mbMSC seems to have additional advantages since it can be obtained by non-invasive procedure and expresses PDGF-B, an important molecule for vascular formation and remodeling.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Movimento Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Animais , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica
7.
Cells ; 9(7)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645832

RESUMO

Chagas disease discovered more than a century ago remains an incurable disease. The objective of this work was to investigate the therapeutic potential of cardiomyocytes derived from mouse embryonic stem cells (CM-mESC) in a model of chronic Chagasic cardiomyopathy (CCC). Mouse embryonic stem cells (mESC) were characterized, transduced with luciferase, and submitted to cardiac differentiation. CM-mESC were labeled with superparamagnetic iron oxide particles. To induce CCC, mice were infected with Brazil strain trypomastigotes. At 150 days post-infection (dpi), infected animals were treated with CM-mESC or PBS. Cells were detected by magnetic resonance imaging (MRI) and bioluminescence. Cardiac function was evaluated by MRI and electrocardiogram at 150 and 196 dpi. CCC mice showed significant differences in MRI and ECG parameters compared to non-infected mice. However, no differences were observed in contractile and electrical parameters between cell and PBS injected groups, 45 days after cell transplantation. Cells were detected 24 h after transplantation by MRI. CM-mESC bioluminescence tracking demonstrated over 90% decrease in signal 8 days after treatment. Nevertheless, the Infected + CM-mESC group showed a significant reduction in the percentage of collagen fibers when compared to the Infected + PBS group. In conclusion, CM-mESC therapy was not effective in reversing cardiac functional changes induced by Chagas disease despite some improvement in myocardial fibrosis.


Assuntos
Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Miócitos Cardíacos/fisiologia , Animais , Cardiomiopatias/diagnóstico por imagem , Doença de Chagas/diagnóstico por imagem , Doença de Chagas/metabolismo , Doença de Chagas/terapia , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Citometria de Fluxo , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Miócitos Cardíacos/metabolismo
8.
Tissue Eng Part A ; 26(13-14): 769-779, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32493133

RESUMO

There is a constant need for improving embryo culture conditions in assisted reproduction. One possibility is to use mesenchymal stem/stromal cells derived from menstrual blood (mbMSCs), with an endometrial origin. In this study, we sought to analyze the expansion of mouse embryos in a direct coculture model with mbMSCs. Our results showed that after five passages, mbMSCs presented a spindle-shaped morphology, with surface markers that were comparable with the normal mesenchymal cell phenotype. mbMSCs could differentiate into adipogenic and osteogenic lineages and secrete angiopoetin-2 and hepatocyte growth factor. The coculture experiments employed 103 two-cell-stage embryos that were randomly divided into two groups: control (n = 50), embryos cultured in GV-Blast medium, and cocultured mbMSCs (n = 53), embryos cocultured with GV-Blast and mbMSCs. Typically, two to three embryos were placed in a well with 200 µL of culture medium and observed until developmental day 5. After 5 days, the cocultured group had more embryos in the blastocyst stage (69.8%) when compared with the control group (30%) (p < 0.001). It was also found that nearly 57% of blastocysts in the cocultured group reached the hatching stage, while only 13% achieved this stage in the control group (p < 0.001). Analyses of cultured mbMSCs and growth media, in the presence or absence of an embryo, were also performed. Immunofluorescence detected similar levels of collagen I and III and fibronectin in both mbMSCs and cocultured mbMSCs, and similar amounts of growth factors, VEGF, PDGF-AA, and PDGF-BB, were also observed in the conditioned medium, regardless of embryo presence. The present study describes, for the first time, an easy, noninvasive, and autologous method that could potentially increase blastocyst growth rates during assisted reproductive procedures (i.e., in vitro fertilization). It is proposed that this mbMSC coculture strategy enriches the embryonic microenvironment and promotes embryo development. This technique may complement or replace existing assisted reproduction methods and is directly relevant to the field of personalized medicine. Impact statement The study demonstrates a novel and potentially personalized assisted reproduction approach. The search for alternative and autologous methods provides assisted reproduction patients with a better chance of a successful pregnancy. In this study, mesenchymal cells derived from menstrual blood resembled the outside uterine surface and could potentially be employed for improving embryo outgrowth. Our protocol enriches the embryonic microenvironment and facilitates high-quality single-embryo transfer.


Assuntos
Desenvolvimento Embrionário/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Angiopoietina-2/metabolismo , Blastocisto/citologia , Blastocisto/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Endométrio/citologia , Endométrio/metabolismo , Feminino , Fibronectinas/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos
9.
Stem Cells Int ; 2019: 7692973, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31531025

RESUMO

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are dynamic cells that can sense the environment, adapting their regulatory functions to different conditions. Accordingly, the therapeutic potential of BM-MSCs can be modulated by preconditioning strategies aimed at modifying their paracrine action. Although rat BM-MSCs (rBM-MSCs) have been widely tested in preclinical research, most preconditioning studies have employed human and mouse BM-MSCs. Herein, we investigated whether rBM-MSCs modify their phenotype and paracrine functions in response to Toll-like receptor (TLR) agonists. The data showed that rBM-MSCs expressed TLR3, TLR4, and MDA5 mRNA and were able to internalize polyinosinic-polycytidylic acid (Poly(I:C)), a TLR3/MDA5 agonist. rBM-MSCs were then stimulated with Poly(I:C) or with lipopolysaccharide (LPS, a TLR4 agonist) for 1 h and were grown under normal culture conditions. LPS or Poly(I:C) stimulation did not affect the viability or the morphology of rBM-MSCs and did not modify the expression pattern of key cell surface markers. Poly(I:C) did not induce statistically significant changes in the release of several inflammatory mediators and VEGF by rBM-MSCs, although it tended to increase IL-6 and MCP-1 secretion, whereas LPS increased the release of IL-6, MCP-1, and VEGF, three factors that were constitutively secreted by unstimulated cells. The neurotrophic activity of the conditioned medium from unstimulated and LPS-preconditioned rBM-MSCs was investigated using dorsal root ganglion explants, showing that soluble factors produced by unstimulated and LPS-preconditioned rBM-MSCs can stimulate neurite outgrowth similarly, in a VEGF-dependent manner. LPS-preconditioned cells, however, were slightly more efficient in increasing the number of regrowing axons in a model of sciatic nerve transection in rats. In conclusion, LPS preconditioning boosted the production of constitutively secreted factors by rBM-MSCs, without changing their mesenchymal identity, an effect that requires further investigation in exploratory preclinical studies.

10.
Stem Cell Res Ther ; 9(1): 30, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402309

RESUMO

BACKGROUND: Doxorubicin (Dox) is a chemotherapy drug with limited application due to cardiotoxicity that may progress to heart failure. This study aims to evaluate the role of cardiomyocytes derived from mouse embryonic stem cells (CM-mESCs) in the treatment of Dox-induced cardiomyopathy (DIC) in mice. METHODS: The mouse embryonic stem cell (mESC) line E14TG2A was characterized by karyotype analysis, gene expression using RT-PCR and immunofluorescence. Cells were transduced with luciferase 2 and submitted to cardiac differentiation. Total conditioned medium (TCM) from the CM-mESCs was collected for proteomic analysis. To establish DIC in CD1 mice, Dox (7.5 mg/kg) was administered once a week for 3 weeks, resulting in a cumulative Dox dose of 22.5 mg/kg. At the fourth week, a group of animals was injected intramyocardially with CM-mESCs (8 × 105 cells). Cells were tracked by a bioluminescence assay, and the body weight, echocardiogram, electrocardiogram and number of apoptotic cardiomyocytes were evaluated. RESULTS: mESCs exhibited a normal karyotype and expressed pluripotent markers. Proteomic analysis of TCM showed proteins related to the negative regulation of cell death. CM-mESCs presented ventricular action potential characteristics. Mice that received Dox developed heart failure and showed significant differences in body weight, ejection fraction (EF), end-systolic volume (ESV), stroke volume (SV), heart rate and QT and corrected QT (QTc) intervals when compared to the control group. After cell or placebo injection, the Dox + CM-mESC group showed significant increases in EF and SV when compared to the Dox + placebo group. Reduction in ESV and QT and QTc intervals in Dox + CM-mESC-treated mice was observed at 5 or 30 days after cell treatment. Cells were detected up to 11 days after injection. The Dox + CM-mESC group showed a significant reduction in the percentage of apoptotic cardiomyocytes in the hearts of mice when compared to the Dox + placebo group. CONCLUSIONS: CM-mESC transplantation improves cardiac function in mice with DIC.


Assuntos
Cardiomiopatias/terapia , Doxorrubicina/efeitos adversos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Linhagem Celular , Doxorrubicina/uso terapêutico , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Miócitos Cardíacos/patologia
11.
J Biol Chem ; 293(6): 1957-1975, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29284679

RESUMO

Alzheimer's disease (AD) is a disabling and highly prevalent neurodegenerative condition, for which there are no effective therapies. Soluble oligomers of the amyloid-ß peptide (AßOs) are thought to be proximal neurotoxins involved in early neuronal oxidative stress and synapse damage, ultimately leading to neurodegeneration and memory impairment in AD. The aim of the current study was to evaluate the neuroprotective potential of mesenchymal stem cells (MSCs) against the deleterious impact of AßOs on hippocampal neurons. To this end, we established transwell cocultures of rat hippocampal neurons and MSCs. We show that MSCs and MSC-derived extracellular vesicles protect neurons against AßO-induced oxidative stress and synapse damage, revealed by loss of pre- and postsynaptic markers. Protection by MSCs entails three complementary mechanisms: 1) internalization and degradation of AßOs; 2) release of extracellular vesicles containing active catalase; and 3) selective secretion of interleukin-6, interleukin-10, and vascular endothelial growth factor to the medium. Results support the notion that MSCs may represent a promising alternative for cell-based therapies in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/citologia , Células-Tronco Mesenquimais/citologia , Neurônios/metabolismo , Estresse Oxidativo , Sinapses/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Animais , Células Cultivadas , Técnicas de Cocultura , Vesículas Extracelulares/genética , Hipocampo/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Arq. bras. cardiol ; 109(6): 579-589, Dec. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-887981

RESUMO

Abstract Background: Diabetes mellitus is a severe chronic disease leading to systemic complications, including cardiovascular dysfunction. Previous cell therapy studies have obtained promising results with the use bone marrow mesenchymal stromal cells derived from healthy animals (MSCc) in diabetes animal models. However, the ability of MSC derived from diabetic rats to improve functional cardiac parameters is still unknown. Objectives: To investigate whether bone-marrow-derived MSC from diabetic rats (MSCd) would contribute to recover metabolic and cardiac electrical properties in other diabetic rats. Methods: Diabetes was induced in Wistar rats with streptozotocin. MSCs were characterized by flow cytometry, morphological analysis, and immunohistochemistry. Cardiac electrical function was analyzed using recordings of ventricular action potential. Differences between variables were considered significant when p < 0.05. Results: In vitro properties of MSCc and MSCd were evaluated. Both cell types presented similar morphology, growth kinetics, and mesenchymal profile, and could differentiate into adipogenic and osteogenic lineages. However, in an assay for fibroblast colony-forming units (CFU-F), MSCd formed more colonies than MSCc when cultured in expansion medium with or without hydrocortisone (1 µM). In order to compare the therapeutic potential of the cells, the animals were divided into four experimental groups: nondiabetic (CTRL), diabetic (DM), diabetic treated with MSCc (DM + MSCc), and diabetic treated with MSCd (DM + MSCd). The treated groups received a single injection of MSC 4 weeks after the development of diabetes. MSCc and MSCd controlled hyperglycemia and body weight loss and improved cardiac electrical remodeling in diabetic rats. Conclusions: MSCd and MSCc have similar in vitro properties and therapeutic potential in a rat model of diabetes induced with streptozotocin.


Resumo Fundamentos: O diabetes mellitus é uma doença crônica grave que leva a complicações sistêmicas, como a disfunção cardiovascular. Estudos anteriores de terapia celular obtiveram resultados promissores com utilização de células estromais mesenquimais (CEM) derivadas de medula óssea de animais saudáveis (CEMc) em modelos de animais diabéticos. No entanto, a capacidade das CEM derivadas de ratos diabéticos em melhorar parâmetros cardíacos funcionais é ainda desconhecida. Objetivos: Investigar se CEM derivadas de medula óssea de ratos diabéticos (CEMd) poderiam contribuir para a recuperação metabólica e de propriedades elétricas cardíacas em outros ratos também com diabetes. Métodos: O diabetes foi induzido em ratos Wistar com estreptozotocina. As CEM foram caracterizadas por citometria de fluxo, análise morfológica e imunohistoquímica. A função elétrica cardíaca foi analisada através de registro do potencial de ação ventricular. As diferenças entre as variáveis foram consideradas significativas quando p < 0,05. Resultados: As propriedades in vitro das CEMc e CEMd foram avaliadas. Ambos os tipos celulares apresentaram morfologia, cinética de crescimento e perfil mesenquimal semelhante, e puderam ser diferenciadas em linhagens adipogênica e osteogênica. No entanto, em ensaios para unidades formadoras de colônias de fibroblastos (UFC-F), as CEMd formaram mais colônias em comparação às CEMc quando cultivadas em meio com ou sem hidrocortisona (1 µM). Para comparar o potencial terapêutico das células, os animais foram divididos em quatro grupos experimentais: não diabéticos (CTRL), diabéticos (DM), diabéticos tratados com CEMc (DM + CEMc) e diabéticos tratados com CEMd (DM + CEMd). Os grupos tratados receberam uma única injeção de CEM 4 semanas após o estabelecimento do diabetes. Ambas CEMc e CEMd controlaram a hiperglicemia e a perda de peso corporal e melhoraram o remodelamento elétrico cardíaco em ratos com diabetes. Conclusão: As CEMd e CEMc possuem propriedades in vitro e potencial terapêutico semelhante em um modelo de rato com diabetes induzido por estreptozotocina. (Arq Bras Cardiol. 2017; 109(6):579-589)


Assuntos
Animais , Masculino , Ratos , Transplante de Células-Tronco Mesenquimais , Diabetes Mellitus Experimental/induzido quimicamente , Células-Tronco Mesenquimais/citologia , Terapia Baseada em Transplante de Células e Tecidos , Cardiopatias/etiologia , Cardiopatias/terapia , Glicemia/metabolismo , Diferenciação Celular , Células Cultivadas , Ratos Wistar , Células-Tronco Mesenquimais/metabolismo
13.
Arq Bras Cardiol ; 109(6): 579-589, 2017 Dec.
Artigo em Inglês, Português | MEDLINE | ID: mdl-29364350

RESUMO

BACKGROUND: Diabetes mellitus is a severe chronic disease leading to systemic complications, including cardiovascular dysfunction. Previous cell therapy studies have obtained promising results with the use bone marrow mesenchymal stromal cells derived from healthy animals (MSCc) in diabetes animal models. However, the ability of MSC derived from diabetic rats to improve functional cardiac parameters is still unknown. OBJECTIVES: To investigate whether bone-marrow-derived MSC from diabetic rats (MSCd) would contribute to recover metabolic and cardiac electrical properties in other diabetic rats. METHODS: Diabetes was induced in Wistar rats with streptozotocin. MSCs were characterized by flow cytometry, morphological analysis, and immunohistochemistry. Cardiac electrical function was analyzed using recordings of ventricular action potential. Differences between variables were considered significant when p < 0.05. RESULTS: In vitro properties of MSCc and MSCd were evaluated. Both cell types presented similar morphology, growth kinetics, and mesenchymal profile, and could differentiate into adipogenic and osteogenic lineages. However, in an assay for fibroblast colony-forming units (CFU-F), MSCd formed more colonies than MSCc when cultured in expansion medium with or without hydrocortisone (1 µM). In order to compare the therapeutic potential of the cells, the animals were divided into four experimental groups: nondiabetic (CTRL), diabetic (DM), diabetic treated with MSCc (DM + MSCc), and diabetic treated with MSCd (DM + MSCd). The treated groups received a single injection of MSC 4 weeks after the development of diabetes. MSCc and MSCd controlled hyperglycemia and body weight loss and improved cardiac electrical remodeling in diabetic rats. CONCLUSIONS: MSCd and MSCc have similar in vitro properties and therapeutic potential in a rat model of diabetes induced with streptozotocin.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus Experimental/induzido quimicamente , Cardiopatias/etiologia , Cardiopatias/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Glicemia/metabolismo , Diferenciação Celular , Células Cultivadas , Masculino , Ratos , Ratos Wistar
14.
Regen Med ; 8(2): 145-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23477395

RESUMO

AIMS: To assess the biodistribution of bone marrow mononuclear cells (BMMNC) delivered by different routes in patients with subacute middle cerebral artery ischemic stroke. PATIENTS & METHODS: This was a nonrandomized, open-label Phase I clinical trial. After bone marrow harvesting, BMMNCs were labeled with technetium-99m and intra-arterially or intravenously delivered together with the unlabeled cells. Scintigraphies were carried out at 2 and 24 h after cell transplantation. Clinical follow-up was continued for 6 months. RESULTS: Twelve patients were included, between 19 and 89 days after stroke, and received 1-5 × 10(8) BMMNCs. The intra-arterial group had greater radioactive counts in the liver and spleen and lower counts in the lungs at 2 and 24 h, while in the brain they were low and similar for both routes. CONCLUSION: BMMNC labeling with technetium-99m allowed imaging for up to 24 h after intra-arterial or intravenous injection in stroke patients.


Assuntos
Células da Medula Óssea/citologia , Transplante de Medula Óssea , Leucócitos Mononucleares/citologia , Acidente Vascular Cerebral/terapia , Humanos , Injeções Intra-Arteriais , Injeções Intravenosas , Cintilografia , Acidente Vascular Cerebral/diagnóstico por imagem , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
15.
J Bone Joint Surg Am ; 94(7): 609-17, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22488617

RESUMO

BACKGROUND: The aim of the present study was to investigate whether adipose-derived stem cells could contribute to skeletal muscle-healing. METHODS: Adipose-derived stem cells of male rats were cultured and injected into the soleus muscles of female rats. Two and four weeks after injections, muscles were tested for tetanic force (50 Hz). Histological analysis was performed to evaluate muscle collagen deposition and the number of centronucleated muscle fibers. In order to track donor cells, chimerism was detected with use of real-time polymerase chain reaction targeting the male sex-determining region Y (SRY) gene. RESULTS: Two weeks after cell injection, tetanus strength and the number of centronucleated regenerating myofibers, as well as the number of centronucleated regenerating myofibers, were higher in the treated group than they were in the control group (mean and standard error of the mean, 79.2 ± 5.0% versus 58.3 ± 8.1%, respectively [p < 0.05]; and 145 ± 36 versus 273 ± 18 per 10³ myofibers, respectively [p < 0.05]). However, there were no significant differences at four weeks. Treatment did not decrease collagen deposition. Male gene was not detected in female host tissue at two and four weeks after engraftment by polymerase chain reaction analysis. CONCLUSIONS: Adipose-derived stem-cell therapy increased muscle repair and force at two weeks, but not four weeks, after injection, suggesting that adipose-derived stem-cell administration may accelerate muscle repair; however, the rapid disappearance of injected cells suggests a paracrine mechanism of action.


Assuntos
Adipócitos/transplante , Músculo Esquelético/lesões , Transplante de Células-Tronco/métodos , Ferimentos e Lesões/terapia , Análise de Variância , Animais , Biópsia por Agulha , Modelos Animais de Doenças , Feminino , Rejeição de Enxerto , Sobrevivência de Enxerto , Imuno-Histoquímica , Masculino , Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/cirurgia , Distribuição Aleatória , Ratos , Ratos Endogâmicos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Regeneração/fisiologia , Medição de Risco , Sensibilidade e Especificidade , Ferimentos e Lesões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA