Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
2.
Nat Commun ; 14(1): 4816, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558666

RESUMO

Cholesterol biosynthesis is a highly regulated, oxygen-dependent pathway, vital for cell membrane integrity and growth. In fungi, the dependency on oxygen for sterol production has resulted in a shared transcriptional response, resembling prolyl hydroxylation of Hypoxia Inducible Factors (HIFs) in metazoans. Whether an analogous metazoan pathway exists is unknown. Here, we identify Sterol Regulatory Element Binding Protein 2 (SREBP2), the key transcription factor driving sterol production in mammals, as an oxygen-sensitive regulator of cholesterol synthesis. SREBP2 degradation in hypoxia overrides the normal sterol-sensing response, and is HIF independent. We identify MARCHF6, through its NADPH-mediated activation in hypoxia, as the main ubiquitin ligase controlling SREBP2 stability. Hypoxia-mediated degradation of SREBP2 protects cells from statin-induced cell death by forcing cells to rely on exogenous cholesterol uptake, explaining why many solid organ tumours become auxotrophic for cholesterol. Our findings therefore uncover an oxygen-sensitive pathway for governing cholesterol synthesis through regulated SREBP2-dependent protein degradation.


Assuntos
Oxigênio , Fatores de Transcrição , Animais , Humanos , Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Hipóxia , Colesterol/metabolismo , Esteróis , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mamíferos/metabolismo
3.
Sci Adv ; 9(20): eadg2235, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196082

RESUMO

Cells produce considerable genotoxic formaldehyde from an unknown source. We carry out a genome-wide CRISPR-Cas9 genetic screen in metabolically engineered HAP1 cells that are auxotrophic for formaldehyde to find this cellular source. We identify histone deacetylase 3 (HDAC3) as a regulator of cellular formaldehyde production. HDAC3 regulation requires deacetylase activity, and a secondary genetic screen identifies several components of mitochondrial complex I as mediators of this regulation. Metabolic profiling indicates that this unexpected mitochondrial requirement for formaldehyde detoxification is separate from energy generation. HDAC3 and complex I therefore control the abundance of a ubiquitous genotoxic metabolite.


Assuntos
Células , Histona Desacetilases , Humanos , Células/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Complexo I de Transporte de Elétrons
4.
Immunity ; 56(5): 1115-1131.e9, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36917985

RESUMO

Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.


Assuntos
Estresse do Retículo Endoplasmático , Mucosa Intestinal , Células Th17 , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Diferenciação Celular , Humanos , Animais , Camundongos , Camundongos Transgênicos , Antibacterianos/farmacologia
5.
Front Immunol ; 13: 1002629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439150

RESUMO

Immune mediated inflammatory diseases (IMIDs) are a heterogeneous group of debilitating, multifactorial and unrelated conditions featured by a dysregulated immune response leading to destructive chronic inflammation. The immune dysregulation can affect various organ systems: gut (e.g., inflammatory bowel disease), joints (e.g., rheumatoid arthritis), skin (e.g., psoriasis, atopic dermatitis), resulting in significant morbidity, reduced quality of life, increased risk for comorbidities, and premature death. As there are no reliable disease progression and therapy response biomarkers currently available, it is very hard to predict how the disease will develop and which treatments will be effective in a given patient. In addition, a considerable proportion of patients do not respond sufficiently to the treatment. ImmUniverse is a large collaborative consortium of 27 partners funded by the Innovative Medicine Initiative (IMI), which is sponsored by the European Union (Horizon 2020) and in-kind contributions of participating pharmaceutical companies within the European Federation of Pharmaceutical Industries and Associations (EFPIA). ImmUniverse aims to advance our understanding of the molecular mechanisms underlying two immune-mediated diseases, ulcerative colitis (UC) and atopic dermatitis (AD), by pursuing an integrative multi-omics approach. As a consequence of the heterogeneity among IMIDs patients, a comprehensive, evidence-based identification of novel biomarkers is necessary to enable appropriate patient stratification that would account for the inter-individual differences in disease severity, drug efficacy, side effects or prognosis. This would guide clinicians in the management of patients and represent a major step towards personalized medicine. ImmUniverse will combine the existing and novel advanced technologies, including multi-omics, to characterize both the tissue microenvironment and blood. This comprehensive, systems biology-oriented approach will allow for identification and validation of tissue and circulating biomarker signatures as well as mechanistic principles, which will provide information about disease severity and future disease progression. This truly makes the ImmUniverse Consortium an unparalleled approach.


Assuntos
Dermatite Atópica , Medicina de Precisão , Humanos , Qualidade de Vida , Biomarcadores , Progressão da Doença
6.
Clin Gastroenterol Hepatol ; 20(11): 2619-2627.e1, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35189386

RESUMO

BACKGROUND & AIMS: Clinical trials evaluating biologics and small molecules in patients with ulcerative colitis are predominantly excluding ulcerative proctitis. The objective of the Definition and endpoints for ulcerative PROCtitis in clinical TRIALs initiative was to develop consensus statements for definitions, inclusion criteria, and endpoints for the evaluation of ulcerative proctitis in adults. METHODS: Thirty-five international experts held a consensus meeting to define ulcerative proctitis, and the endpoints to use in clinical trials. Based on a systematic review of the literature, statements were generated, discussed, and approved by the working group participants using a modified Delphi method. Consensus was defined as at least 75% agreement among voters. RESULTS: The group agreed that the diagnosis of ulcerative proctitis should be made by ileocolonoscopy and confirmed by histopathology, with the exclusion of infections, drug-induced causes, radiation, trauma, and Crohn's disease. Ulcerative proctitis was defined as macroscopic extent of lesions limited to 15 cm distance from the anal verge in adults. Primary and secondary endpoints were identified to capture response of ulcerative proctitis to therapy. A combined clinical and endoscopic primary endpoint for the evaluation of ulcerative proctitis disease activity was proposed. Secondary endpoints that should be evaluated include endoscopic remission, histologic remission, mucosal healing, histologic endoscopic mucosal improvement, disability, fecal incontinence, urgency, constipation, and health-related quality of life. CONCLUSIONS: In response to the need for guidance on the design of clinical trials in patients with ulcerative proctitis, the Definition and end points for ulcerative PROCtitis in clinical TRIALs consensus provides recommendations on the definition and endpoints for ulcerative proctitis clinical trials.


Assuntos
Colite Ulcerativa , Doença de Crohn , Proctite , Adulto , Humanos , Colite Ulcerativa/terapia , Colite Ulcerativa/tratamento farmacológico , Qualidade de Vida , Doença de Crohn/tratamento farmacológico , Endoscopia , Proctite/diagnóstico , Proctite/tratamento farmacológico
7.
Gastroenterology ; 162(6): 1690-1704, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35031299

RESUMO

BACKGROUND & AIMS: Crohn's disease (CD) globally emerges with Westernization of lifestyle and nutritional habits. However, a specific dietary constituent that comprehensively evokes gut inflammation in human inflammatory bowel diseases remains elusive. We aimed to delineate how increased intake of polyunsaturated fatty acids (PUFAs) in a Western diet, known to impart risk for developing CD, affects gut inflammation and disease course. We hypothesized that the unfolded protein response and antioxidative activity of glutathione peroxidase 4 (GPX4), which are compromised in human CD epithelium, compensates for metabolic perturbation evoked by dietary PUFAs. METHODS: We phenotyped and mechanistically dissected enteritis evoked by a PUFA-enriched Western diet in 2 mouse models exhibiting endoplasmic reticulum (ER) stress consequent to intestinal epithelial cell (IEC)-specific deletion of X-box binding protein 1 (Xbp1) or Gpx4. We translated the findings to human CD epithelial organoids and correlated PUFA intake, as estimated by a dietary questionnaire or stool metabolomics, with clinical disease course in 2 independent CD cohorts. RESULTS: PUFA excess in a Western diet potently induced ER stress, driving enteritis in Xbp1-/-IEC and Gpx4+/-IEC mice. ω-3 and ω-6 PUFAs activated the epithelial endoplasmic reticulum sensor inositol-requiring enzyme 1α (IRE1α) by toll-like receptor 2 (TLR2) sensing of oxidation-specific epitopes. TLR2-controlled IRE1α activity governed PUFA-induced chemokine production and enteritis. In active human CD, ω-3 and ω-6 PUFAs instigated epithelial chemokine expression, and patients displayed a compatible inflammatory stress signature in the serum. Estimated PUFA intake correlated with clinical and biochemical disease activity in a cohort of 160 CD patients, which was similarly demonstrable in an independent metabolomic stool analysis from 199 CD patients. CONCLUSIONS: We provide evidence for the concept of PUFA-induced metabolic gut inflammation which may worsen the course of human CD. Our findings provide a basis for targeted nutritional therapy.


Assuntos
Doença de Crohn , Enterite , Ácidos Graxos Ômega-3 , Animais , Doença de Crohn/tratamento farmacológico , Endorribonucleases , Enterite/induzido quimicamente , Enterite/tratamento farmacológico , Ácidos Graxos Insaturados , Humanos , Inflamação/tratamento farmacológico , Camundongos , Proteínas Serina-Treonina Quinases , Receptor 2 Toll-Like
8.
Cell Metab ; 34(1): 106-124.e10, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986329

RESUMO

Still's disease, the paradigm of autoinflammation-cum-autoimmunity, predisposes for a cytokine storm with excessive T lymphocyte activation upon viral infection. Loss of function of the purine nucleoside enzyme FAMIN is the sole known cause for monogenic Still's disease. Here we discovered that a FAMIN-enabled purine metabolon in dendritic cells (DCs) restrains CD4+ and CD8+ T cell priming. DCs with absent FAMIN activity prime for enhanced antigen-specific cytotoxicity, IFNγ secretion, and T cell expansion, resulting in excessive influenza A virus-specific responses. Enhanced priming is already manifest with hypomorphic FAMIN-I254V, for which ∼6% of mankind is homozygous. FAMIN controls membrane trafficking and restrains antigen presentation in an NADH/NAD+-dependent manner by balancing flux through adenine-guanine nucleotide interconversion cycles. FAMIN additionally converts hypoxanthine into inosine, which DCs release to dampen T cell activation. Compromised FAMIN consequently enhances immunosurveillance of syngeneic tumors. FAMIN is a biochemical checkpoint that protects against excessive antiviral T cell responses, autoimmunity, and autoinflammation.


Assuntos
Autoimunidade , Purinas , Linfócitos T CD8-Positivos , Células Dendríticas , Ativação Linfocitária , Purinas/metabolismo
9.
Gut ; 71(3): 509-520, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758004

RESUMO

OBJECTIVE: Primary sclerosing cholangitis (PSC) is in 70% of cases associated with inflammatory bowel disease. The hypermorphic T108M variant of the orphan G protein-coupled receptor GPR35 increases risk for PSC and ulcerative colitis (UC), conditions strongly predisposing for inflammation-associated liver and colon cancer. Lack of GPR35 reduces tumour numbers in mouse models of spontaneous and colitis associated cancer. The tumour microenvironment substantially determines tumour growth, and tumour-associated macrophages are crucial for neovascularisation. We aim to understand the role of the GPR35 pathway in the tumour microenvironment of spontaneous and colitis-associated colon cancers. DESIGN: Mice lacking GPR35 on their macrophages underwent models of spontaneous colon cancer or colitis-associated cancer. The role of tumour-associated macrophages was then assessed in biochemical and functional assays. RESULTS: Here, we show that GPR35 on macrophages is a potent amplifier of tumour growth by stimulating neoangiogenesis and tumour tissue remodelling. Deletion of Gpr35 in macrophages profoundly reduces tumour growth in inflammation-associated and spontaneous tumour models caused by mutant tumour suppressor adenomatous polyposis coli. Neoangiogenesis and matrix metalloproteinase activity is promoted by GPR35 via Na/K-ATPase-dependent ion pumping and Src activation, and is selectively inhibited by a GPR35-specific pepducin. Supernatants from human inducible-pluripotent-stem-cell derived macrophages carrying the UC and PSC risk variant stimulate tube formation by enhancing the release of angiogenic factors. CONCLUSIONS: Activation of the GPR35 pathway promotes tumour growth via two separate routes, by directly augmenting proliferation in epithelial cells that express the receptor, and by coordinating macrophages' ability to create a tumour-permissive environment.


Assuntos
Colangite Esclerosante/patologia , Colite Ulcerativa/patologia , Neoplasias do Colo/etiologia , Neovascularização Patológica/etiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Colangite Esclerosante/genética , Colite Ulcerativa/genética , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Macrófagos/fisiologia , Camundongos , Microambiente Tumoral
10.
Gastroenterology ; 162(1): 223-237.e11, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599932

RESUMO

BACKGROUND & AIMS: Throughout life, the intestinal epithelium undergoes constant self-renewal from intestinal stem cells. Together with genotoxic stressors and failing DNA repair, this self-renewal causes susceptibility toward malignant transformation. X-box binding protein 1 (XBP1) is a stress sensor involved in the unfolded protein response (UPR). We hypothesized that XBP1 acts as a signaling hub to regulate epithelial DNA damage responses. METHODS: Data from The Cancer Genome Atlas were analyzed for association of XBP1 with colorectal cancer (CRC) survival and molecular interactions between XBP1 and p53 pathway activity. The role of XBP1 in orchestrating p53-driven DNA damage response was tested in vitro in mouse models of chronic intestinal epithelial cell (IEC) DNA damage (Xbp1/H2bfl/fl, Xbp1ΔIEC, H2bΔIEC, H2b/Xbp1ΔIEC) and via orthotopic tumor organoid transplantation. Transcriptome analysis of intestinal organoids was performed to identify molecular targets of Xbp1-mediated DNA damage response. RESULTS: In The Cancer Genome Atlas data set of CRC, low XBP1 expression was significantly associated with poor overall survival and reduced p53 pathway activity. In vivo, H2b/Xbp1ΔIEC mice developed spontaneous intestinal carcinomas. Orthotopic tumor organoid transplantation revealed a metastatic potential of H2b/Xbp1ΔIEC-derived tumors. RNA sequencing of intestinal organoids (H2b/Xbp1fl/fl, H2bΔIEC, H2b/Xbp1ΔIEC, and H2b/p53ΔIEC) identified a transcriptional program downstream of p53, in which XBP1 directs DNA-damage-inducible transcript 4-like (Ddit4l) expression. DDIT4L inhibits mechanistic target of rapamycin-mediated phosphorylation of 4E-binding protein 1. Pharmacologic mechanistic target of rapamycin inhibition suppressed epithelial hyperproliferation via 4E-binding protein 1. CONCLUSIONS: Our data suggest a crucial role for XBP1 in coordinating epithelial DNA damage responses and stem cell function via a p53-DDIT4L-dependent feedback mechanism.


Assuntos
Adenocarcinoma/metabolismo , Adenoma/metabolismo , Transformação Celular Neoplásica/metabolismo , Dano ao DNA , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenoma/tratamento farmacológico , Adenoma/genética , Adenoma/patologia , Animais , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Bases de Dados Genéticas , Estresse do Retículo Endoplasmático , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Neoplasias Intestinais/tratamento farmacológico , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Inibidores de MTOR/farmacologia , Camundongos Knockout , Transdução de Sinais , Sirolimo/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação a X-Box/genética
11.
Nat Metab ; 3(9): 1150-1162, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34531575

RESUMO

Macrophages exhibit a spectrum of activation states ranging from classical to alternative activation1. Alternatively, activated macrophages are involved in diverse pathophysiological processes such as confining tissue parasites2, improving insulin sensitivity3 or promoting an immune-tolerant microenvironment that facilitates tumour growth and metastasis4. Recently, the metabolic regulation of macrophage function has come into focus as both the classical and alternative activation programmes require specific regulated metabolic reprogramming5. While most of the studies regarding immunometabolism have focussed on the catabolic pathways activated to provide energy, little is known about the anabolic pathways mediating macrophage alternative activation. In this study, we show that the anabolic transcription factor sterol regulatory element binding protein 1 (SREBP1) is activated in response to the canonical T helper 2 cell cytokine interleukin-4 to trigger the de novo lipogenesis (DNL) programme, as a necessary step for macrophage alternative activation. Mechanistically, DNL consumes NADPH, partitioning it away from cellular antioxidant defences and raising reactive oxygen species levels. Reactive oxygen species serves as a second messenger, signalling sufficient DNL, and promoting macrophage alternative activation. The pathophysiological relevance of this mechanism is validated by showing that SREBP1/DNL is essential for macrophage alternative activation in vivo in a helminth infection model.


Assuntos
Antioxidantes/metabolismo , Ácidos Graxos/biossíntese , Macrófagos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Dexametasona/farmacologia , Humanos , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Nippostrongylus/isolamento & purificação , Nippostrongylus/patogenicidade , Células RAW 264.7 , Análise de Sequência de RNA/métodos , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Regulação para Cima
12.
J Crohns Colitis ; 15(12): 2001-2010, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34077509

RESUMO

BACKGROUND AND AIMS: Risankizumab, an interleukin-23 antibody, demonstrated efficacy and acceptable safety in a phase 2 study of patients with moderate-to-severe refractory Crohn's disease. This open-label extension investigated the long-term safety, pharmacokinetics, immunogenicity and efficacy of risankizumab in responders to risankizumab in the parent phase 2 study. METHODS: Enrolled patients had achieved clinical response [decrease in Crohn's Disease Activity Index from baseline ≥100] without clinical remission [Crohn's Disease Activity Index <150] at Week 26, or clinical response and/or remission at Week 52 in the parent phase 2 study and received open-label subcutaneous risankizumab 180 mg every 8 weeks. RESULTS: Sixty-five patients were enrolled, including four who had lost response in the parent study and were first reinduced with risankizumab 600 mg every 4 weeks [three infusions]. Patients received risankizumab for a median of 33 months [total: 167.0 patient-years]. The rate of serious adverse events was 24.6 events/100 patient-years; the majority were gastrointestinal in nature. Rates of serious infections, opportunistic infections and fungal infections were 4.2, 1.8, and 6.6 events/100 patient-years, respectively. No deaths, malignancies, adjudicated major adverse cardiovascular events, latent/active tuberculosis or herpes zoster were reported. Treatment-emergent anti-drug antibodies developed in eight patients [12.3%]; none were neutralizing. Efficacy outcomes were maintained during the study, including the proportions of patients [observed analysis] with clinical remission [>71%] and endoscopic remission [>42%]. CONCLUSIONS: Long-term maintenance treatment with subcutaneous risankizumab 180 mg every 8 weeks was well tolerated by patients with Crohn's disease, with no new safety signals. Clinical trial registration number: NCT02513459.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doença de Crohn/tratamento farmacológico , Fármacos Gastrointestinais/uso terapêutico , Infecções Oportunistas/etiologia , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Feminino , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/farmacocinética , Humanos , Injeções Subcutâneas , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
14.
Gastroenterology ; 160(4): 1269-1283, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217447

RESUMO

BACKGROUND AND AIMS: Vitamin D exerts a regulatory role over mucosal immunity via the vitamin D receptor (VDR). Although Paneth cells and their products are known to regulate the commensal and pathogenic microbiota, the role that VDRs in Paneth cells play in these responses is unknown. METHODS: We identified the decreased intestinal VDR significantly correlated with reduction of an inflammatory bowel disease risk gene ATG16L1 and Paneth cell lysozymes in patients with Crohn's disease. We generated Paneth cell-specific VDR knockout (VDRΔPC) mice to investigate the molecular mechanisms. RESULTS: Lysozymes in the Paneth cells were significantly decreased in the VDRΔPC mice. Isolated VDRΔPC Paneth cells exhibited weakened inhibition of pathogenic bacterial growth and displayed reduced autophagic responses. VDRΔPC mice had significantly higher inflammation after Salmonella infections. VDRΔPC mice also showed high susceptibility to small intestinal injury induced by indomethacin, a nonsteroidal anti-inflammatory drug. Co-housing of VDRΔPC and VDRlox mice made the VDRΔPC less vulnerable to dextran sulfate sodium colitis, suggesting the transmission of protective bacterial from the VDRlox mice. Thus, a lack of VDR in Paneth cells leads to impaired antibacterial activities and consequently increased inflammatory responses. Genetically and environmentally regulated VDRs in the Paneth cells may set the threshold for the development of chronic inflammation, as observed in inflammatory bowel diseases. CONCLUSIONS: We provide new insights into the tissue-specific functions of VDRs in maintaining Paneth cell alertness to pathogens in intestinal disorders. Targeting the VDR affects multiple downstream events within Paneth cells that inhibit intestinal inflammation and establish host defense against enteropathogens.


Assuntos
Doença de Crohn/imunologia , Microbiota/imunologia , Celulas de Paneth/imunologia , Receptores de Calcitriol/metabolismo , Animais , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Biópsia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Doença de Crohn/induzido quimicamente , Doença de Crohn/genética , Doença de Crohn/microbiologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Humanos , Íleo/imunologia , Íleo/microbiologia , Íleo/patologia , Imunidade nas Mucosas , Masculino , Camundongos , Camundongos Knockout , Muramidase/metabolismo , Celulas de Paneth/metabolismo , Receptores de Calcitriol/genética , Vitamina D/metabolismo
15.
Gastroenterology ; 159(4): 1357-1374.e10, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673694

RESUMO

BACKGROUND & AIMS: Excess and unresolved endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) promotes intestinal inflammation. Activating transcription factor 6 (ATF6) is one of the signaling mediators of ER stress. We studied the pathways that regulate ATF6 and its role for inflammation in IECs. METHODS: We performed an RNA interference screen, using 23,349 unique small interfering RNAs targeting 7783 genes and a luciferase reporter controlled by an ATF6-dependent ERSE (ER stress-response element) promoter, to identify proteins that activate or inhibit the ATF6 signaling pathway in HEK293 cells. To validate the screening results, intestinal epithelial cell lines (Caco-2 cells) were transfected with small interfering RNAs or with a plasmid overexpressing a constitutively active form of ATF6. Caco-2 cells with a CRISPR-mediated disruption of autophagy related 16 like 1 gene (ATG16L1) were used to study the effect of ATF6 on ER stress in autophagy-deficient cells. We also studied intestinal organoids derived from mice that overexpress constitutively active ATF6, from mice with deletion of the autophagy related 16 like 1 or X-Box binding protein 1 gene in IECs (Atg16l1ΔIEC or Xbp1ΔIEC, which both develop spontaneous ileitis), from patients with Crohn's disease (CD) and healthy individuals (controls). Cells and organoids were incubated with tunicamycin to induce ER stress and/or chemical inhibitors of newly identified activator proteins of ATF6 signaling, and analyzed by real-time polymerase chain reaction and immunoblots. Atg16l1ΔIEC and control (Atg16l1fl/fl) mice were given intraperitoneal injections of tunicamycin and were treated with chemical inhibitors of ATF6 activating proteins. RESULTS: We identified and validated 15 suppressors and 7 activators of the ATF6 signaling pathway; activators included the regulatory subunit of casein kinase 2 (CSNK2B) and acyl-CoA synthetase long chain family member 1 (ACSL1). Knockdown or chemical inhibition of CSNK2B and ACSL1 in Caco-2 cells reduced activity of the ATF6-dependent ERSE reporter gene, diminished transcription of the ATF6 target genes HSP90B1 and HSPA5 and reduced NF-κB reporter gene activation on tunicamycin stimulation. Atg16l1ΔIEC and or Xbp1ΔIEC organoids showed increased expression of ATF6 and its target genes. Inhibitors of ACSL1 or CSNK2B prevented activation of ATF6 and reduced CXCL1 and tumor necrosis factor (TNF) expression in these organoids on induction of ER stress with tunicamycin. Injection of mice with inhibitors of ACSL1 or CSNK2B significantly reduced tunicamycin-mediated intestinal inflammation and IEC death and expression of CXCL1 and TNF in Atg16l1ΔIEC mice. Purified ileal IECs from patients with CD had higher levels of ATF6, CSNK2B, and HSPA5 messenger RNAs than controls; early-passage organoids from patients with active CD show increased levels of activated ATF6 protein, incubation of these organoids with inhibitors of ACSL1 or CSNK2B reduced transcription of ATF6 target genes, including TNF. CONCLUSIONS: Ileal IECs from patients with CD have higher levels of activated ATF6, which is regulated by CSNK2B and HSPA5. ATF6 increases expression of TNF and other inflammatory cytokines in response to ER stress in these cells and in organoids from Atg16l1ΔIEC and Xbp1ΔIEC mice. Strategies to inhibit the ATF6 signaling pathway might be developed for treatment of inflammatory bowel diseases.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Células Epiteliais/patologia , Íleo/metabolismo , Íleo/patologia , Doenças Inflamatórias Intestinais/metabolismo , Animais , Autofagia , Células CACO-2 , Técnicas de Cultura de Células , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos , Transdução de Sinais
16.
Cell Rep ; 32(1): 107857, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640223

RESUMO

Macrophages play a central role in intestinal immunity, but inappropriate macrophage activation is associated with inflammatory bowel disease (IBD). Here, we identify granulocyte-macrophage colony stimulating factor (GM-CSF) as a critical regulator of intestinal macrophage activation in patients with IBD and mice with dextran sodium sulfate (DSS)-induced colitis. We find that GM-CSF drives the maturation and polarization of inflammatory intestinal macrophages, promoting anti-microbial functions while suppressing wound-healing transcriptional programs. Group 3 innate lymphoid cells (ILC3s) are a major source of GM-CSF in intestinal inflammation, with a strong positive correlation observed between ILC or CSF2 transcripts and M1 macrophage signatures in IBD mucosal biopsies. Furthermore, GM-CSF-dependent macrophage polarization results in a positive feedback loop that augmented ILC3 activation and type 17 immunity. Together, our data reveal an important role for GM-CSF-mediated ILC-macrophage crosstalk in calibrating intestinal macrophage phenotype to enhance anti-bacterial responses, while inhibiting pro-repair functions associated with fibrosis and stricturing, with important clinical implications.


Assuntos
Infecções por Enterobacteriaceae/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Inflamação/patologia , Intestinos/patologia , Macrófagos/patologia , Cicatrização , Animais , Polaridade Celular , Citrobacter rodentium/fisiologia , Colite/complicações , Colite/imunologia , Colite/patologia , Humanos , Imunidade Inata , Linfócitos/imunologia , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Fenótipo
17.
Proc Natl Acad Sci U S A ; 117(26): 15160-15171, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541026

RESUMO

IgG antibodies cause inflammation and organ damage in autoimmune diseases such as systemic lupus erythematosus (SLE). We investigated the metabolic profile of macrophages isolated from inflamed tissues in immune complex (IC)-associated diseases, including SLE and rheumatoid arthritis, and following IgG Fcγ receptor cross-linking. We found that human and mouse macrophages undergo a switch to glycolysis in response to IgG IC stimulation, mirroring macrophage metabolic changes in inflamed tissue in vivo. This metabolic reprogramming was required to generate a number of proinflammatory mediators, including IL-1ß, and was dependent on mTOR and hypoxia-inducible factor (HIF)1α. Inhibition of glycolysis, or genetic depletion of HIF1α, attenuated IgG IC-induced activation of macrophages in vitro, including primary human kidney macrophages. In vivo, glycolysis inhibition led to a reduction in kidney macrophage IL-1ß and reduced neutrophil recruitment in a murine model of antibody-mediated nephritis. Together, our data reveal the molecular mechanisms underpinning FcγR-mediated metabolic reprogramming in macrophages and suggest a therapeutic strategy for autoantibody-induced inflammation, including lupus nephritis.


Assuntos
Reprogramação Celular/fisiologia , Nefrite Lúpica/metabolismo , Animais , Células Cultivadas , Dinoprostona/genética , Dinoprostona/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Glicólise/fisiologia , Humanos , Imunoglobulina G/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Rim/citologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio , Receptores de IgG/genética , Receptores de IgG/metabolismo
18.
Commun Biol ; 3(1): 252, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444775

RESUMO

Tumors have evolved mechanisms to escape anti-tumor immunosurveillance. They limit humoral and cellular immune activities in the stroma and render tumors resistant to immunotherapy. Sensitizing tumor cells to immune attack is an important strategy to revert immunosuppression. However, the underlying mechanisms of immune escape are still poorly understood. Here we discover Indoleamine-2,3-dioxygenase-1 (IDO1)+ Paneth cells in the stem cell niche of intestinal crypts and tumors, which promoted immune escape of colorectal cancer (CRC). Ido1 expression in Paneth cells was strictly Stat1 dependent. Loss of IDO1+ Paneth cells in murine intestinal adenomas with tumor cell-specific Stat1 deletion had profound effects on the intratumoral immune cell composition. Patient samples and TCGA expression data suggested corresponding cells in human colorectal tumors. Thus, our data uncovered an immune escape mechanism of CRC and identify IDO1+ Paneth cells as a target for immunotherapy.


Assuntos
Neoplasias Colorretais/patologia , Tolerância Imunológica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Neoplasias Intestinais/patologia , Celulas de Paneth/imunologia , Fator de Transcrição STAT1/fisiologia , Animais , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Neoplasias Intestinais/imunologia , Neoplasias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Nat Rev Dis Primers ; 6(1): 22, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242028

RESUMO

Crohn's disease is an inflammatory bowel disease that is characterized by chronic inflammation of any part of the gastrointestinal tract, has a progressive and destructive course and is increasing in incidence worldwide. Several factors have been implicated in the cause of Crohn's disease, including a dysregulated immune system, an altered microbiota, genetic susceptibility and environmental factors, but the cause of the disease remains unknown. The onset of the disease at a young age in most cases necessitates prompt but long-term treatment to prevent disease flares and disease progression with intestinal complications. Thus, earlier, more aggressive treatment with biologic therapies or novel small molecules could profoundly change the natural history of the disease and decrease complications and the need for hospitalization and surgery. Although less invasive biomarkers are in development, diagnosis still relies on endoscopy and histological assessment of biopsy specimens. Crohn's disease is a complex disease, and treatment should be personalized to address the underlying pathogenetic mechanism. In the future, disease management might rely on severity scores that incorporate prognostic factors, bowel damage assessment and non-invasive close monitoring of disease activity to reduce the severity of complications.


Assuntos
Doença de Crohn/diagnóstico , Doença de Crohn/terapia , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/metabolismo , Doença de Crohn/fisiopatologia , Diagnóstico por Imagem , Progressão da Doença , Microbioma Gastrointestinal , Humanos , Complexo Antígeno L1 Leucocitário/análise , Fatores de Risco
20.
Nat Commun ; 11(1): 1775, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286299

RESUMO

The increased incidence of inflammatory bowel disease (IBD) has become a global phenomenon that could be related to adoption of a Western life-style. Westernization of dietary habits is partly characterized by enrichment with the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA), which entails risk for developing IBD. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation (LPO) and cell death termed ferroptosis. We report that small intestinal epithelial cells (IECs) in Crohn's disease (CD) exhibit impaired GPX4 activity and signs of LPO. PUFAs and specifically AA trigger a cytokine response of IECs which is restricted by GPX4. While GPX4 does not control AA metabolism, cytokine production is governed by similar mechanisms as ferroptosis. A PUFA-enriched Western diet triggers focal granuloma-like neutrophilic enteritis in mice that lack one allele of Gpx4 in IECs. Our study identifies dietary PUFAs as a trigger of GPX4-restricted mucosal inflammation phenocopying aspects of human CD.


Assuntos
Doença de Crohn/metabolismo , Gorduras na Dieta/efeitos adversos , Enterite/metabolismo , Ácidos Graxos Insaturados/metabolismo , Inflamação/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Adulto , Animais , Morte Celular/genética , Morte Celular/fisiologia , Doença de Crohn/genética , Enterite/etiologia , Enterite/genética , Ácidos Graxos Insaturados/genética , Feminino , Glutationa Peroxidase/metabolismo , Humanos , Inflamação/genética , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA