Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nanotoxicology ; 18(1): 69-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38420937

RESUMO

In the lung, carcinogenesis is a multi-stage process that includes initiation by a genotoxic agent, promotion that expands the population of cells with damaged DNA to form a tumor, and progression from benign to malignant neoplasms. We have previously shown that Mitsui-7, a long and rigid multi-walled carbon nanotube (MWCNT), promotes pulmonary carcinogenesis in a mouse model. To investigate the potential exposure threshold and dose-response for tumor promotion by this MWCNT, 3-methylcholanthrene (MC) initiated (10 µg/g, i.p., once) or vehicle (corn oil) treated B6C3F1 mice were exposed by inhalation to filtered air or MWCNT (5 mg/m3) for 5 h/day for 0, 2, 5, or 10 days and were followed for 17 months post-exposure for evidence of lung tumors. Pulmonary neoplasia incidence in MC-initiated mice significantly increased with each MWCNT exposure duration. Exposure to either MC or MWCNT alone did not affect pulmonary neoplasia incidence compared with vehicle controls. Lung tumor multiplicity in MC-initiated mice also significantly increased with each MWCNT exposure duration. Thus, a significantly higher lung tumor multiplicity was observed after a 10-day MWCNT exposure than following a 2-day exposure. Both bronchioloalveolar adenoma and bronchioloalveolar adenocarcinoma multiplicity in MC-initiated mice were significantly increased following 5- and 10-day MWCNT exposure, while a 2-day MWCNT exposure in MC-initiated mice significantly increased the multiplicity of adenomas but not adenocarcinomas. In this study, even the lowest MWCNT exposure promoted lung tumors in MC-initiated mice. Our findings indicate that exposure to this MWCNT strongly promotes pulmonary carcinogenesis.


Assuntos
Neoplasias Pulmonares , Pulmão , Camundongos , Animais , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos , Transformação Celular Neoplásica , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Exposição por Inalação , Camundongos Endogâmicos C57BL
2.
Inhal Toxicol ; 35(9-10): 241-253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37330949

RESUMO

OBJECTIVE: Workers may be exposed to vapors emitted from crude oil in upstream operations in the oil and gas industry. Although the toxicity of crude oil constituents has been studied, there are very few in vivo investigations designed to mimic crude oil vapor (COV) exposures that occur in these operations. The goal of the current investigation was to examine lung injury, inflammation, oxidant generation, and effects on the lung global gene expression profile following a whole-body acute or sub-chronic inhalation exposure to COV. MATERIALS AND METHODS: To conduct this investigation, rats were subjected to either a whole-body acute (6 hr) or a sub-chronic (28 d) inhalation exposure (6 hr/d × 4 d/wk × 4 wk) to COV (300 ppm; Macondo well surrogate oil). Control rats were exposed to filtered air. One and 28 d after acute exposure, and 1, 28, and 90 d following sub-chronic exposure, bronchoalveolar lavage was performed on the left lung to collect cells and fluid for analyses, the apical right lobe was preserved for histopathology, and the right cardiac and diaphragmatic lobes were processed for gene expression analyses. RESULTS: No exposure-related changes were identified in histopathology, cytotoxicity, or lavage cell profiles. Changes in lavage fluid cytokines indicative of inflammation, immune function, and endothelial function after sub-chronic exposure were limited and varied over time. Minimal gene expression changes were detected only at the 28 d post-exposure time interval in both the exposure groups. CONCLUSION: Taken together, the results from this exposure paradigm, including concentration, duration, and exposure chamber parameters, did not indicate significant and toxicologically relevant changes in markers of injury, oxidant generation, inflammation, and gene expression profile in the lung.


Assuntos
Petróleo , Pneumonia , Ratos , Animais , Petróleo/toxicidade , Petróleo/metabolismo , Transcriptoma , Pneumonia/patologia , Pulmão , Gases/análise , Gases/metabolismo , Gases/farmacologia , Inflamação/patologia , Oxidantes/metabolismo , Líquido da Lavagem Broncoalveolar , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise
3.
Nanotoxicology ; 17(3): 249-269, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37115655

RESUMO

Fibrogenic carbon nanotubes (CNTs) induce the polarization of M1 and M2 macrophages in mouse lungs. Polarization of the macrophages regulates the production of proinflammatory and pro-resolving lipid mediators (LMs) to mediate acute inflammation and its resolution in a time-dependent manner. Here we examined the molecular mechanism by which multi-walled CNTs (MWCNTs, Mitsui-7) induce M1 polarization in vitro. Treatment of murine macrophages (J774A.1) with Mitsui-7 MWCNTs increased the expression of Alox5 mRNA and protein in a concentration- and time-dependent manner. The MWCNTs induced the expression of CD68 and that induction persisted for up to 3 days post-exposure. The expression and activity of inducible nitric oxide synthase, an intracellular marker of M1, were increased by MWCNTs. Consistent with M1 polarization, the MWCNTs induced the production and secretion of proinflammatory cytokines tumor necrosis factor-α and interleukin-1ß, and proinflammatory LMs leukotriene B4 (LTB4) and prostaglandin E2 (PGE2). The cell-free media from MWCNT-polarized macrophages induced the migration of neutrophilic cells (differentiated from HL-60), which was blocked by Acebilustat, a specific leukotriene A4 hydrolase inhibitor, or LY239111, an LTB4 receptor antagonist, but not NS-398, a cyclooxygenase 2 inhibitor, revealing LTB4 as a major mediator of neutrophil chemotaxis from MWCNT-polarized macrophages. Knockdown of Alox5 using specific small hairpin-RNA suppressed MWCNT-induced M1 polarization, LTB4 secretion, and migration of neutrophils. Taken together, these findings demonstrate the polarization of M1 macrophages by Mitsui-7 MWCNTs in vitro and that induction of Alox5 is an important mechanism by which the MWCNTs promote proinflammatory responses by boosting M1 polarization and production of proinflammatory LMs.


Assuntos
Araquidonato 5-Lipoxigenase , Macrófagos , Nanotubos de Carbono , Animais , Camundongos , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Citocinas/metabolismo , Leucotrieno B4/metabolismo , Nanotubos de Carbono/toxicidade , Ativação de Macrófagos
5.
Toxicol Rep ; 9: 1045-1053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936059

RESUMO

Consumption of a high-fat Western diet (HFWD) contributes to obesity, disrupted adipose endocrine function, and development of metabolic dysfunction (MetDys). Impaired lung function, pulmonary hypertension, and asthma are all associated with MetDys. Over 35% of adults in the U.S. have MetDys, yet interactions between MetDys and hazardous occupational inhalation exposures are largely unknown. Occupational silica-inhalation leads to chronic lung inflammation, progressive fibrosis, and significant respiratory morbidity and mortality. In this study, we aim to determine the potential of HFWD-consumption to alter silica-induced inflammatory responses in the lung. Six-wk old male F344 rats fed a high fat Western diet (HFWD; 45 kcal % fat, sucrose 22.2% by weight) to induce MetDys, or standard rat chow (STD, controls) for 16 wk were subsequently exposed to silica (6 h/d, 5 d/wk, 39 d; Min-U-Sil 5®, 15 mg/m3) or filtered air; animals remained on their assigned diet for the study duration. Indices of lung inflammation and histopathologic assessment of lung tissue were quantified at 0, 4, and 8 wk after cessation of exposure. Combined HFWD+silica exposure increased bronchoalveolar lavage (BAL) total cells, leukocytes, and BAL lactate dehydrogenase compared to STD+silica exposure controls at all timepoints. HFWD+silica exposure increased BAL proinflammatory cytokines at 4 and 8 wk compared to STD+silica exposure. At 8 wk, histopathological analysis confirmed that alveolitis, epithelial cell hypertrophy and hyperplasia, lipoproteinosis, fibrosis, bronchoalveolar lymphoid hyperplasia and granulomas were exacerbated in the HFWD+silica-exposed group compared to STD+silica-exposed controls. Our results suggest an increased susceptibility to silica-induced lung disease caused by HFWD consumption.

6.
Toxicol Appl Pharmacol ; 450: 116154, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798068

RESUMO

Workers involved in oil exploration and production in the upstream petroleum industry are exposed to crude oil vapor (COV). COV levels in the proximity of workers during production tank gauging and opening of thief hatches can exceed regulatory standards, and several deaths have occurred after opening thief hatches. There is a paucity of information regarding the effects of COV inhalation in the lung. To address these knowledge gaps, the present hazard identification study was undertaken to investigate the effects of an acute, single inhalation exposure (6 h) or a 28 d sub-chronic exposure (6 h/d × 4 d/wk × 4 wks) to COV (300 ppm; Macondo well surrogate oil) on ventilatory and non-ventilatory functions of the lung in a rat model 1 and 28 d after acute exposure, and 1, 28 and 90 d following sub-chronic exposure. Basal airway resistance was increased 90 d post-sub-chronic exposure, but reactivity to methacholine (MCh) was unaffected. In the isolated, perfused trachea preparation the inhibitory effect of the airway epithelium on reactivity to MCh was increased at 90 d post-exposure. Efferent cholinergic nerve activity regulating airway smooth muscle was unaffected by COV exposure. Acute exposure did not affect basal airway epithelial ion transport, but 28 d after sub-chronic exposure alterations in active (Na+ and Cl¯) and passive ion transport occurred. COV treatment did not affect lung vascular permeability. The findings indicate that acute and sub-chronic COV inhalation does not appreciably affect ventilatory properties of the rat, but transient changes in airway epithelium occur.


Assuntos
Petróleo , Resistência das Vias Respiratórias , Animais , Exposição por Inalação/efeitos adversos , Pulmão , Cloreto de Metacolina/farmacologia , Petróleo/toxicidade , Ratos
7.
Inhal Toxicol ; 34(9-10): 275-286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35724235

RESUMO

Objective: Stainless steel welding creates fumes rich in carcinogenic metals such as chromium (Cr). Welding consumables devoid of Cr are being produced in an attempt to limit worker exposures to toxic and carcinogenic metals. The study objective was to characterize a copper-nickel (Cu-Ni) fume generated using gas metal arc welding (GMAW) and determine the pulmonary deposition and toxicity of the fume in mice exposed by inhalation. Materials and Methods: Male A/J mice (6-8 weeks of age) were exposed to air or Cu-Ni welding fumes for 2 (low deposition) or 4 (high deposition) hours/day for 10 days. Mice were sacrificed, and bronchoalveolar lavage (BAL), macrophage function, and histopathological analyses were performed at different timepoints post-exposure to evaluate resolution. Results and Discussion: Characterization of the fume indicated that most of the particles were between 0.1 and 1 µm in diameter, with a mass median aerodynamic diameter of 0.43 µm. Metal content of the fume was Cu (∼76%) and Ni (∼12%). Post-exposure, BAL macrophages had a reduced ability to phagocytose E. coli, and lung cytotoxicity was evident and significant (>12%-19% fold change). Loss of body weight was also significant at the early timepoints. Lung inflammation, the predominant finding identified by histopathology, was observed as a subacute response early that progressively resolved by 28 days with only macrophage aggregates remaining late (84 days). Conclusions: Overall, there was high acute lung toxicity with a resolution of the response in mice which suggests that the Cu-Ni fume may not be ideal for reducing toxic and inflammatory lung effects.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Animais , Cromo , Cobre/toxicidade , Escherichia coli , Gases/análise , Gases/farmacologia , Pulmão , Masculino , Metais , Camundongos , Níquel/toxicidade , Soldagem/métodos
8.
Inhal Toxicol ; 34(7-8): 200-218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35648795

RESUMO

Purpose: To investigate the molecular mechanisms underlying the pulmonary toxicity induced by exposure to one form of multi-walled carbon nanotubes (MWCNT-7).Materials and methods: Rats were exposed, by whole-body inhalation, to air or an aerosol containing MWCNT-7 particles at target cumulative doses (concentration x time) ranging from 22.5 to 180 (mg/m3)h over a three-day (6 hours/day) period and toxicity and global gene expression profiles were determined in the lungs.Results: MWCNT-7 particles, associated with alveolar macrophages (AMs), were detected in rat lungs following the exposure. Mild to moderate lung pathological changes consisting of increased cellularity, thickening of the alveolar wall, alveolitis, fibrosis, and granuloma formation were detected. Bronchoalveolar lavage (BAL) toxicity parameters such as lactate dehydrogenase activity, number of AMs and polymorphonuclear leukocytes (PMNs), intracellular oxidant generation by phagocytes, and levels of cytokines were significantly (p < 0.05) increased in response to exposure to MWCNT-7. Global gene expression profiling identified several significantly differentially expressed genes (fold change >1.5 and FDR p value <0.05) in all the MWCNT-7 exposed rats. Bioinformatic analysis of the gene expression data identified significant enrichment of several diseases/biological function categories (for example, cancer, leukocyte migration, inflammatory response, mitosis, and movement of phagocytes) and canonical pathways (for example, kinetochore metaphase signaling pathway, granulocyte and agranulocyte adhesion and diapedesis, acute phase response, and LXR/RXR activation). The alterations in the lung toxicity parameters and gene expression changes exhibited a dose-response to the MWCNT exposure.Conclusions: Taken together, the data provided insights into the molecular mechanisms underlying the pulmonary toxicity induced by inhalation exposure of rats to MWCNT-7.


Assuntos
Exposição por Inalação , Nanotubos de Carbono , Animais , Líquido da Lavagem Broncoalveolar , Expressão Gênica , Exposição por Inalação/efeitos adversos , Pulmão/patologia , Nanotubos de Carbono/toxicidade , Ratos
9.
Toxicol Appl Pharmacol ; 449: 116137, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35750205

RESUMO

Workers in the oil and gas industry are at risk for exposure to a number of physical and chemical hazards at the workplace. Chemical hazard risks include inhalation of crude oil or its volatile components. While several studies have investigated the neurotoxic effects of volatile hydrocarbons, in general, there is a paucity of studies assessing the neurotoxicity of crude oil vapor (COV). Consequent to the 2010 Deepwater Horizon (DWH) oil spill, there is growing concern about the short- and long-term health effects of exposure to COV. NIOSH surveys suggested that the DWH oil spill cleanup workers experienced neurological symptoms, including depression and mood disorders, but the health effects apart from oil dispersants were difficult to discern. To investigate the potential neurological risks of COV, male Sprague-Dawley rats were exposed by whole-body inhalation to COV (300 ppm; Macondo surrogate crude oil) following an acute (6 h/d × 1 d) or sub-chronic (6 h/d × 4 d/wk. × 4 wks) exposure regimen. At 1, 28 or 90 d post-exposure, norepinephrine (NE), epinephrine (EPI), dopamine (DA) and serotonin (5-HT) were evaluated as neurotransmitter imbalances are associated with psychosocial-, motor- and cognitive- disorders. Sub-chronic COV exposure caused significant reductions in NE, EPI and DA in the dopaminergic brain regions, striatum (STR) and midbrain (MB), and a large increase in 5-HT in the STR. Further, sub-chronic exposure to COV caused upregulation of synaptic and Parkinson's disease-related proteins in the STR and MB. Whether such effects will lead to neurodegenerative outcomes remain to be investigated.


Assuntos
Síndromes Neurotóxicas , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Gases , Masculino , Síndromes Neurotóxicas/etiologia , Neurotransmissores , Ratos , Ratos Sprague-Dawley , Serotonina , Poluentes Químicos da Água/toxicidade
10.
Int J Toxicol ; 41(4): 312-328, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35586871

RESUMO

This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 µg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.


Assuntos
Acrilonitrila , Poluição do Ar em Ambientes Fechados , Acrilonitrila/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Butadienos/toxicidade , Células Epiteliais , Humanos , Tamanho da Partícula , Material Particulado , Impressão Tridimensional , Estireno/análise , Estireno/toxicidade
11.
Toxicol Appl Pharmacol ; 447: 116071, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35598716

RESUMO

Workers in the oil and gas extraction industry are at risk of inhaling volatile organic compounds. Epidemiological studies suggest oil vapor inhalation may affect cardiovascular health. Thus, in this hazard identification study we investigated the effects of inhalation of crude oil vapor (COV) on cardiovascular function. Male rats were exposed to air or COV (300 ppm) for 6 h (acute), or 6 h/day × 4 d/wk. × 4 wk. (sub-chronic). The effects of COV inhalation were assessed 1, 28, and 90 d post-exposure. Acute exposure to COV resulted in reductions in mean arterial and diastolic blood pressures 1 and 28 d after exposure, changes in nitrate-nitrite and H2O2 levels, and in the expression of transcripts and proteins that regulate inflammation, vascular remodeling, and the synthesis of nitric oxide (NO) in the heart and kidneys. The sub-chronic exposure resulted in a reduced sensitivity to α1-adrenoreceptor-mediated vasoconstriction in vitro 28 d post-exposure, and a reduction in oxidative stress in the heart. Sub-chronic COV exposure led to alterations in the expression of NO synthases and anti-oxidant enzymes, which regulate inflammation and oxidative stress in the heart and kidneys. There seems to be a balance between changes in the expression of transcripts associated with the generation of reactive oxygen species (ROS) and antioxidant enzymes. The ability of antioxidant enzymes to reduce or inhibit the effects of ROS may allow the cardiovascular system to adapt to acute COV exposures. However, sub-chronic exposures may result in longer-lasting negative health consequences on the cardiovascular system.


Assuntos
Sistema Cardiovascular , Petróleo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Sistema Cardiovascular/metabolismo , Gases/farmacologia , Peróxido de Hidrogênio/farmacologia , Inflamação , Exposição por Inalação/efeitos adversos , Masculino , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo
12.
Part Fibre Toxicol ; 18(1): 47, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34923995

RESUMO

BACKGROUND: Multi-walled carbon nanotubes and nanofibers (CNT/F) have been previously investigated for their potential toxicities; however, comparative studies of the broad material class are lacking, especially those with a larger diameter. Additionally, computational modeling correlating physicochemical characteristics and toxicity outcomes have been infrequently employed, and it is unclear if all CNT/F confer similar toxicity, including histopathology changes such as pulmonary fibrosis. Male C57BL/6 mice were exposed to 40 µg of one of nine CNT/F (MW #1-7 and CNF #1-2) commonly found in exposure assessment studies of U.S. facilities with diameters ranging from 6 to 150 nm. Human fibroblasts (0-20 µg/ml) were used to assess the predictive value of in vitro to in vivo modeling systems. RESULTS: All materials induced histopathology changes, although the types and magnitude of the changes varied. In general, the larger diameter MWs (MW #5-7, including Mitsui-7) and CNF #1 induced greater histopathology changes compared to MW #1 and #3 while MW #4 and CNF #2 were intermediate in effect. Differences in individual alveolar or bronchiolar outcomes and severity correlated with physical dimensions and how the materials agglomerated. Human fibroblast monocultures were found to be insufficient to fully replicate in vivo fibrosis outcomes suggesting in vitro predictive potential depends upon more advanced cell culture in vitro models. Pleural penetrations were observed more consistently in CNT/F with larger lengths and diameters. CONCLUSION: Physicochemical characteristics, notably nominal CNT/F dimension and agglomerate size, predicted histopathologic changes and enabled grouping of materials by their toxicity profiles. Particles of greater nominal tube length were generally associated with increased severity of histopathology outcomes. Larger particle lengths and agglomerates were associated with more severe bronchi/bronchiolar outcomes. Spherical agglomerated particles of smaller nominal tube dimension were linked to granulomatous inflammation while a mixture of smaller and larger dimensional CNT/F resulted in more severe alveolar injury.


Assuntos
Nanofibras , Nanotubos de Carbono , Fibrose Pulmonar , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanofibras/toxicidade , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente
13.
Part Fibre Toxicol ; 17(1): 62, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287860

RESUMO

BACKGROUND: Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 µg/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. RESULTS: Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. CONCLUSION: Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters.


Assuntos
Poluentes Atmosféricos/toxicidade , Nanofibras/toxicidade , Nanotubos de Carbono/toxicidade , Poluentes Atmosféricos/química , Dano ao DNA , Células Epiteliais , Humanos , Exposição por Inalação , Nanofibras/química , Nanotubos de Carbono/química , Tamanho da Partícula , Propriedades de Superfície , Estados Unidos
14.
Inhal Toxicol ; 32(11-12): 403-418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33076715

RESUMO

BACKGROUND: Fused filament fabrication 3-D printing with acrylonitrile butadiene styrene (ABS) filament emits ultrafine particulates (UFPs) and volatile organic compounds (VOCs). However, the toxicological implications of the emissions generated during 3-D printing have not been fully elucidated. AIM AND METHODS: The goal of this study was to investigate the in vivo toxicity of ABS-emissions from a commercial desktop 3-D printer. Male Sprague Dawley rats were exposed to a single concentration of ABS-emissions or air for 4 hours/day, 4 days/week for five exposure durations (1, 4, 8, 15, and 30 days). At 24 hours after the last exposure, rats were assessed for pulmonary injury, inflammation, and oxidative stress as well as systemic toxicity. RESULTS AND DISCUSSION: 3-D printing generated particulate with average particle mass concentration of 240 ± 90 µg/m³, with an average geometric mean particle mobility diameter of 85 nm (geometric standard deviation = 1.6). The number of macrophages increased significantly at day 15. In bronchoalveolar lavage, IFN-γ and IL-10 were significantly higher at days 1 and 4, with IL-10 levels reaching a peak at day 15 in ABS-exposed rats. Neither pulmonary oxidative stress responses nor histopathological changes of the lungs and nasal passages were found among the treatments. There was an increase in platelets and monocytes in the circulation at day 15. Several serum biomarkers of hepatic and kidney functions were significantly higher at day 1. CONCLUSIONS: At the current experimental conditions applied, it was concluded that the emissions from ABS filament caused minimal transient pulmonary and systemic toxicity.


Assuntos
Resinas Acrílicas/toxicidade , Poluição do Ar em Ambientes Fechados/efeitos adversos , Butadienos/toxicidade , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Poliestirenos/toxicidade , Impressão Tridimensional , Sistema Respiratório/efeitos dos fármacos , Compostos Orgânicos Voláteis/toxicidade , Resinas Acrílicas/farmacocinética , Aerossóis , Poluição do Ar em Ambientes Fechados/análise , Animais , Biomarcadores/metabolismo , Contagem de Células Sanguíneas , Líquido da Lavagem Broncoalveolar/química , Butadienos/farmacocinética , Citocinas/sangue , Masculino , Microscopia Eletrônica de Varredura , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Material Particulado/análise , Material Particulado/farmacocinética , Poliestirenos/farmacocinética , Ratos Sprague-Dawley , Sistema Respiratório/metabolismo , Sistema Respiratório/ultraestrutura , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/farmacocinética
15.
Toxicol Appl Pharmacol ; 408: 115280, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065154

RESUMO

The pulmonary inflammatory response to inhalation exposure to a fracking sand dust (FSD 8) was investigated in a rat model. Adult male Sprague-Dawley rats were exposed by whole-body inhalation to air or an aerosol of a FSD, i.e., FSD 8, at concentrations of 10 or 30 mg/m3, 6 h/d for 4 d. The control and FSD 8-exposed rats were euthanized at post-exposure time intervals of 1, 7 or 27 d and pulmonary inflammatory, cytotoxic and oxidant responses were determined. Deposition of FSD 8 particles was detected in the lungs of all the FSD 8-exposed rats. Analysis of bronchoalveolar lavage parameters of toxicity, oxidant generation, and inflammation did not reveal any significant persistent pulmonary toxicity in the FSD 8-exposed rats. Similarly, the lung histology of the FSD 8-exposed rats showed only minimal changes in influx of macrophages following the exposure. Determination of global gene expression profiles detected statistically significant differential expressions of only six and five genes in the 10 mg/m3, 1-d post-exposure, and the 30 mg/m3, 7-d post-exposure FSD 8 groups, respectively. Taken together, data obtained from the present study demonstrated that FSD 8 inhalation exposure resulted in no statistically significant toxicity or gene expression changes in the lungs of the rats. In the absence of any information about its potential toxicity, a comprehensive rat animal model study (see Fedan, J.S., Toxicol Appl Pharmacol. 000, 000-000, 2020) has been designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems.


Assuntos
Poeira , Fraturamento Hidráulico , Areia , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Contagem de Leucócitos , Pulmão/imunologia , Pneumopatias/genética , Pneumopatias/imunologia , Macrófagos/imunologia , Masculino , Ratos Sprague-Dawley
16.
Toxicol Appl Pharmacol ; 408: 115281, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065155

RESUMO

Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain insight into the potential toxicity to workers associated with inhalation of FSD during hydraulic fracturing. While the role of respirable crystalline silica in the development of silicosis is well documented, nothing is known about the toxicity of inhaled FSD. The FSD (FSD 8) used in these studies was from an unconventional gas well drilling site. FSD 8was prepared as a 10 mg/ml stock solution in sterile PBS, vortexed for 15 s, and allowed to sit at room temperature for 30 min before applying the suspension to RAW 264.7cells. Compared to PBS controls, cellular viability was significantly decreased after a 24 h exposure to FSD. Intracellular reactive oxygen species (ROS) production and the production of IL-6, TNFα, and endothelin-1 (ET-1) were up-regulated as a result of the exposure, whereas the hydroxyl radical (.OH) was only detected in an acellular system. Immunofluorescent staining of cells against TNFα revealed that FSD 8 caused cellular blebbing, and engulfment of FSD 8 by macrophages was observed with enhanced dark-field microscopy. The observed changes in cellular viability, cellular morphology, free radical generation and cytokine production all confirm that FSD 8 is cytotoxic to RAW 264.7 cells and warrants future studies into the specific pathways and mechanisms by which these toxicities occur.


Assuntos
Poeira , Fraturamento Hidráulico , Areia , Animais , Sobrevivência Celular , Ensaio Cometa , Inflamação , Interleucina-6 , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa
17.
Toxicol Appl Pharmacol ; 409: 115284, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068619

RESUMO

Hydraulic fracturing creates fissures in subterranean rock to increase the flow and retrieval of natural gas. Sand ("proppant") in fracking fluid injected into the well bore maintains fissure patency. Fracking sand dust (FSD) is generated during manipulation of sand to prepare the fracking fluid. Containing respirable crystalline silica, FSD could pose hazards similar to those found in work sites where silica inhalation induces lung disease such as silicosis. This study was performed to evaluate the possible toxic effects following inhalation of a FSD (FSD 8) in the lung and airways. Rats were exposed (6 h/d × 4 d) to 10 or 30 mg/m3 of a FSD collected at a gas well, and measurements were performed 1, 7, 27 and, in one series of experiments, 90 d post-exposure. The following ventilatory and non-ventilatory parameters were measured in vivo and/or in vitro: 1) lung mechanics (respiratory system resistance and elastance, tissue damping, tissue elastance, Newtonian resistance and hysteresivity); 2) airway reactivity to inhaled methacholine (MCh); airway epithelium integrity (isolated, perfused trachea); airway efferent motor nerve activity (electric field stimulation in vitro); airway smooth muscle contractility; ion transport in intact and cultured epithelium; airway effector and sensory nerves; tracheal particle deposition; and neurogenic inflammation/vascular permeability. FSD 8 was without large effect on most parameters, and was not pro-inflammatory, as judged histologically and in cultured epithelial cells, but increased reactivity to inhaled MCh at some post-exposure time points and affected Na+ transport in airway epithelial cells.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Areia/química , Administração por Inalação , Animais , Poeira , Células Epiteliais/efeitos dos fármacos , Fraturamento Hidráulico/métodos , Masculino , Cloreto de Metacolina/farmacologia , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/efeitos dos fármacos , Dióxido de Silício/efeitos adversos , Traqueia/efeitos dos fármacos
18.
Toxicol Lett ; 334: 60-65, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961271

RESUMO

Iron oxides are Group 3 (not classifiable as to its carcinogenicity to humans) according to the International Agency for Research on Cancer (IARC). Occupational exposures during iron and steel founding and hematite underground mining as well as other iron predominant exposures such as welding are Group 1 (carcinogenic to humans). The objective of this study was to investigate the potential of iron as iron (III) oxide (Fe2O3) to initiate lung tumors in A/J mice, a lung tumor susceptible strain. Male A/J mice were exposed by oropharyngeal aspiration to suspensions of Fe2O3 (1 mg) or calcium chromate (CaCrO4; 100 µg; positive control) for 26 weeks (once per week). Shams were exposed to 50 µL phosphate buffered saline (PBS; vehicle). Mice were euthanized 70 weeks after the first exposure and lung nodules were enumerated. Both CaCrO4 and Fe2O3 significantly increased gross-observed lung tumor multiplicity in A/J mice (9.63 ± 0.55 and 3.35 ± 0.30, respectively) compared to sham (2.31 ± 0.19). Histopathological analysis showed that bronchiolo-alveolar adenomas (BAA) and carcinomas (BAC) were the primary lung tumor types in all groups and were increased in the exposed groups compared to sham. BAC were significantly increased (146 %) in the CaCrO4 group and neared significance in the Fe2O3 group (100 % increase; p = 0.085). BAA and other histopathological indices of toxicity followed the same pattern with exposed groups increased compared to sham control. In conclusion, evidence from this study, in combination with our previous studies, demonstrate that exposure to iron alone may be a potential risk factor for lung carcinogenesis.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Compostos de Cálcio/toxicidade , Carcinogênese/efeitos dos fármacos , Cromatos/toxicidade , Compostos Férricos/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Animais , Suscetibilidade a Doenças , Relação Dose-Resposta a Droga , Hiperplasia/induzido quimicamente , Hiperplasia/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Soldagem
19.
Toxicol Sci ; 178(2): 375-390, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976597

RESUMO

Smoking may modify the lung response to silica exposure including cancer and silicosis. Nevertheless, the precise role of exposure to tobacco smoke (TS) on the lung response to crystalline silica (CS) exposure and the underlying mechanisms need further clarification. The objectives of the present study were to determine the role of TS on lung response to CS exposure and the underlying mechanism(s). Male Fischer 344 rats were exposed by inhalation to air, CS (15 mg/m3, 6 h/day, 5 days), TS (80 mg/m3, 3 h/day, twice weekly, 6 months), or CS (15 mg/m3, 6 h/day, 5 days) followed by TS (80 mg/m3, 3 h/day, twice weekly, 6 months). The rats were euthanized 6 months and 3 weeks following initiation of the first exposure and the lung response was assessed. Silica exposure resulted in significant lung toxicity as evidenced by lung histological changes, enhanced neutrophil infiltration, increased lactate dehydrogenase levels, enhanced oxidant production, and increased cytokine levels. The TS exposure alone had only a minimal effect on these toxicity parameters. However, the combined exposure to TS and CS exacerbated the lung response, compared with TS or CS exposure alone. Global gene expression changes in the lungs correlated with the lung toxicity severity. Bioinformatic analysis of the gene expression data demonstrated significant enrichment in functions, pathways, and networks relevant to the response to CS exposure which correlated with the lung toxicity detected. Collectively our data demonstrated an exacerbation of CS-induced lung toxicity by TS exposure and the molecular mechanisms underlying the exacerbated toxicity.


Assuntos
Silicose , Poluição por Fumaça de Tabaco , Animais , Progressão da Doença , Pulmão , Masculino , Ratos , Ratos Endogâmicos F344 , Dióxido de Silício/toxicidade , Silicose/patologia , Fumaça/efeitos adversos , Poluição por Fumaça de Tabaco/efeitos adversos
20.
Toxicol Sci ; 177(1): 108-120, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32514565

RESUMO

Studies suggest that alterations in circulating factors are a driver of pulmonary-induced cardiovascular dysfunction. To evaluate, if circulating factors effect endothelial function after a pulmonary exposure to welding fumes, an exposure known to induce cardiovascular dysfunction, serum collected from Sprague Dawley rats 24 h after an intratracheal instillation exposure to 2 mg/rat of 2 compositionally distinct metal-rich welding fume particulates (manual metal arc welding using stainless steel electrodes [MMA-SS] or gas metal arc welding using mild steel electrodes [GMA-MS]) or saline was used to test molecular and functional effects of in vitro cultures of primary cardiac microvascular endothelial cells (PCMEs) or ex vivo organ cultures. The welding fumes elicited significant pulmonary injury and inflammation with only minor changes in measured serum antioxidant and cytokine levels. PCME cells were challenged for 4 h with serum collected from exposed rats, and 84 genes related to endothelial function were analyzed. Changes in relative mRNA patterns indicated that serum from rats exposed to MMA-SS, and not GMA-MS or PBS, could influence several functional aspects related to endothelial cells, including cell migration, angiogenesis, inflammation, and vascular function. The predictions were confirmed using a functional in vitro assay (scratch assay) as well as an ex vivo multicellular environment (aortic ring angiogenesis assay), validating the concept that endothelial cells can be used as an effective screening tool of exposed workers for determining bioactivity of altered circulatory factors. Overall, the results indicate that pulmonary MMA-SS fume exposure can cause altered endothelial function systemically via altered circulating factors.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Poluentes Ocupacionais do Ar/toxicidade , Animais , Células Endoteliais , Pulmão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Aço Inoxidável/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA