Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6597, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852965

RESUMO

Influenza virus infection causes increased morbidity and mortality in the elderly. Aging impairs the immune response to influenza, both intrinsically and because of altered interactions with endothelial and pulmonary epithelial cells. To characterize these changes, we performed single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and bulk RNA sequencing (bulk RNA-seq) on lung tissue from young and aged female mice at days 0, 3, and 9 post-influenza infection. Our analyses identified dozens of key genes differentially expressed in kinetic, age-dependent, and cell type-specific manners. Aged immune cells exhibited altered inflammatory, memory, and chemotactic profiles. Aged endothelial cells demonstrated characteristics of reduced vascular wound healing and a prothrombotic state. Spatial transcriptomics identified novel profibrotic and antifibrotic markers expressed by epithelial and non-epithelial cells, highlighting the complex networks that promote fibrosis in aged lungs. Bulk RNA-seq generated a timeline of global transcriptional activity, showing increased expression of genes involved in inflammation and coagulation in aged lungs. Our work provides an atlas of high-throughput sequencing methodologies that can be used to investigate age-related changes in the response to influenza virus, identify novel cell-cell interactions for further study, and ultimately uncover potential therapeutic targets to improve health outcomes in the elderly following influenza infection.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Feminino , Animais , Camundongos , Idoso , Células Endoteliais , Pulmão/metabolismo , Células Epiteliais/metabolismo
2.
Blood Adv ; 6(9): 2791-2804, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35015822

RESUMO

Gastrointestinal (GI) tract involvement is a major determinant for subsequent morbidity and mortality arising during graft-versus-host disease (GVHD). CD4+ T cells that produce granulocyte-macrophage colony stimulating factor (GM-CSF) have emerged as central mediators of inflammation in this tissue site as GM-CSF serves as a critical cytokine link between the adaptive and innate arms of the immune system. However, cellular heterogeneity within the CD4+ GM-CSF+ T-cell population due to the concurrent production of other inflammatory cytokines has raised questions as to whether these cells have a common ontology or if a unique CD4+ GM-CSF+ subset exists that differs from other defined T helper subtypes. Using single-cell RNA sequencing analysis (scRNAseq), we identified two CD4+ GM-CSF+ T-cell populations that arose during GVHD and were distinguishable according to the presence or absence of interferon-γ (IFN-γ) coexpression. CD4+ GM-CSF+ IFN-γ- T cells, which emerged preferentially in the colon, had a distinct transcriptional profile, used unique gene regulatory networks, and possessed a nonoverlapping T-cell receptor repertoire compared with CD4+ GM-CSF+ IFN-γ+ T cells as well as all other transcriptionally defined CD4+ T-cell populations in the colon. Functionally, this CD4+ GM-CSF+ T-cell population contributed to pathologic damage in the GI tract that was critically dependent on signaling through the interleukin-17 (IL-7) receptor but was independent of type 1 interferon signaling. Thus, these studies help to unravel heterogeneity within CD4+ GM-CSF+ T cells that arise during GVHD and define a developmentally distinct colitogenic T helper subtype GM-CSF+ subset that mediates immunopathology.


Assuntos
Doença Enxerto-Hospedeiro , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Linfócitos T CD4-Positivos , Linhagem da Célula , Citocinas , Trato Gastrointestinal , Doença Enxerto-Hospedeiro/etiologia , Humanos , Interferon gama
3.
Sci Immunol ; 6(64): eabg7836, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34597124

RESUMO

"Stem-like" TCF1+ CD8+ T (TSL) cells are necessary for long-term maintenance of T cell responses and the efficacy of immunotherapy, but, as tumors contain signals that should drive T cell terminal differentiation, how these cells are maintained in tumors remains unclear. In this study, we found that a small number of TCF1+ tumor-specific CD8+ T cells were present in lung tumors throughout their development. Yet, most intratumoral T cells differentiated as tumors progressed, corresponding with an immunologic shift in the tumor microenvironment (TME) from "hot" (T cell inflamed) to "cold" (non­T cell inflamed). By contrast, most tumor-specific CD8+ T cells in tumor-draining lymph nodes (dLNs) had functions and gene expression signatures similar to TSL from chronic lymphocytic choriomeningitis virus infection, and this population was stable over time despite the changes in the TME. dLN T cells were the developmental precursors of, and were clonally related to, their more differentiated intratumoral counterparts. Our data support the hypothesis that dLN T cells are the developmental precursors of the TCF1+ T cells in tumors that are maintained by continuous migration. Last, CD8+ T cells similar to TSL were also present in LNs from patients with lung adenocarcinoma, suggesting that a similar model may be relevant in human disease. Thus, we propose that the dLN TSL reservoir has a critical function in sustaining antitumor T cells during tumor development and in protecting them from the terminal differentiation that occurs in the TME.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Pulmonares/imunologia , Linfonodos/imunologia , Animais , Feminino , Imunoterapia , Neoplasias Pulmonares/terapia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia
4.
Nat Immunol ; 22(8): 996-1007, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34282329

RESUMO

During chronic viral infection, CD8+ T cells develop into three major phenotypically and functionally distinct subsets: Ly108+TCF-1+ progenitors, Ly108-CX3CR1- terminally exhausted cells and the recently identified CX3CR1+ cytotoxic effector cells. Nevertheless, how CX3CR1+ effector cell differentiation is transcriptionally and epigenetically regulated remains elusive. Here, we identify distinct gene regulatory networks and epigenetic landscapes underpinning the formation of these subsets. Notably, our data demonstrate that CX3CR1+ effector cells bear a striking similarity to short-lived effector cells during acute infection. Genetic deletion of Tbx21 significantly diminished formation of the CX3CR1+ subset. Importantly, we further identify a previously unappreciated role for the transcription factor BATF in maintaining a permissive chromatin structure that allows the transition from TCF-1+ progenitors to CX3CR1+ effector cells. BATF directly bound to regulatory regions near Tbx21 and Klf2, modulating their enhancer accessibility to facilitate the transition. These mechanistic insights can potentially be harnessed to overcome T cell exhaustion during chronic infection and cancer.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Proteínas com Domínio T/genética , Subpopulações de Linfócitos T/citologia , Animais , Antígenos Ly/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular , Feminino , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia
5.
J Exp Med ; 218(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34132742

RESUMO

BRD4 is a bromodomain-containing protein that binds acetylated histones to regulate transcription. In this issue of JEM, Milner et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20202512) show that BRD4 plays a critical role in the effector function of CD8 T cells responding to infection and cancer.


Assuntos
Neoplasias , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Histonas , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Cell Rep ; 35(8): 109160, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038722

RESUMO

The immune response to a chronic viral infection is uniquely tailored to balance viral control and immunopathology. The role of myeloid cells in shaping the response to chronic viral infection, however, is poorly understood. We perform single-cell RNA sequencing of myeloid cells during acute and chronic lymphocytic choriomeningitis virus (LCMV) infection to address this question. Our analysis identifies a cluster of suppressive neutrophils that is enriched in chronic infection. Furthermore, suppressive neutrophils highly express the gene encoding Proviral integration site for Moloney murine leukemia virus-1 (PIM1), a kinase known to promote mitochondrial fitness and cell survival. Pharmacological inhibition of PIM1 selectively diminishes suppressive neutrophil-mediated immunosuppression without affecting the function of monocytic myeloid-derived suppressor cells (M-MDSCs). Decreased accumulation of suppressive neutrophils leads to increased CD8 T cell function and viral control. Mechanistically, PIM kinase activity is required for maintaining fused mitochondrial networks in suppressive neutrophils, but not in M-MDSCs, and loss of PIM kinase function causes increased suppressive neutrophil apoptosis.


Assuntos
Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Viroses/imunologia , Doença Crônica , Humanos
7.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809259

RESUMO

In cancer, CD8+ T cells enter a dysfunctional state which prevents them from effectively targeting and killing tumor cells. Tumor-infiltrating CD8+ T cells consist of a heterogeneous population of memory-like progenitor, effector, and terminally exhausted cells that exhibit differing functional and self-renewal capacities. Our recently published work has shown that interleukin (IL)-21-producing CD4+ T cells help to generate effector CD8+ T cells within the tumor, which results in enhanced tumor control. However, the molecular mechanisms by which CD4+ helper T cells regulate the differentiation of effector CD8+ T cells are not well understood. In this study, we found that Basic Leucine Zipper ATF-Like Transcription Factor (BATF), a transcription factor downstream of IL-21 signaling, is critical to maintain CD8+ T cell effector function within the tumor. Using mixed bone marrow chimeras, we demonstrated that CD8+ T cell-specific deletion of BATF resulted in impaired tumor control. In contrast, overexpressing BATF in CD8+ T cells enhanced effector function and resulted in improved tumor control, bypassing the need for CD4+ helper T cells. Transcriptomic analyses revealed that BATF-overexpressing CD8+ T cells had increased expression of costimulatory receptors, effector molecules, and transcriptional regulators, which may contribute to their enhanced activation and effector function. Taken together, our study unravels a previously unappreciated CD4+ T cell-derived IL-21-BATF axis that could provide therapeutic insights to enhance effector CD8+ T cell function to fight cancer.

8.
Cancer Immunol Res ; 9(4): 454-469, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33579728

RESUMO

There is a strong correlation between myeloid-derived suppressor cells (MDSC) and resistance to immune checkpoint blockade (ICB), but the detailed mechanisms underlying this correlation are largely unknown. Using single-cell RNA sequencing analysis in a bilateral tumor model, we found that immunosuppressive myeloid cells with characteristics of fatty acid oxidative metabolism dominate the immune-cell landscape in ICB-resistant subjects. In addition, we uncovered a previously underappreciated role of a serine/threonine kinase, PIM1, in regulating lipid oxidative metabolism via PPARγ-mediated activities. Enforced PPARγ expression sufficiently rescued metabolic and functional defects of Pim1 -/- MDSCs. Consistent with this, pharmacologic inhibition of PIM kinase by AZD1208 treatment significantly disrupted the myeloid cell-mediated immunosuppressive microenvironment and unleashed CD8+ T-cell-mediated antitumor immunity, which enhanced PD-L1 blockade in preclinical cancer models. PIM kinase inhibition also sensitized nonresponders to PD-L1 blockade by selectively targeting suppressive myeloid cells. Overall, we have identified PIM1 as a metabolic modulator in MDSCs that is associated with ICB resistance and can be therapeutically targeted to overcome ICB resistance.


Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Células Supressoras Mieloides/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Antígeno B7-H1/efeitos dos fármacos , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Compostos de Bifenilo/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Imunoterapia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/imunologia , Proteínas Proto-Oncogênicas c-pim-1/genética , Tiazolidinas/farmacologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA