Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 57(4): 1235-40, 1991 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2059045

RESUMO

Historically, methods used to identify Vibrio vulnificus in environmental samples have been inadequate because isolation and identification procedures are time-consuming and fail to separate V. vulnificus from other bacterial species. We describe an enzyme immunoassay (EIA) and culture techniques which identified V. vulnificus in seawater, sediment, and oysters. The EIA used monoclonal antibody FRBT37 to a species-specific epitope of V. vulnificus. No cross-reactions were observed among 72 non-V. vulnificus strains comprising 34 species and 15 genera. In field trials, the EIA identified correctly 99.7% of 348 biochemically confirmed V. vulnificus isolates. The epitope corresponding to FRBT37 was found in cells lysed by Triton X-100, deionized H2O, and ultrasonication but was not found in culture supernatants, indicating that its location was intracellular. In addition, electron micrographs of V. vulnificus labeled with FRBT37-biotin-avidin-gold showed that epitope FRBT37 reacted with fragments of lysed cells but not whole cells. FRBT37 was expressed when V. vulnificus was cultured in different growth media. The minimum level of detection of the EIA was approximately 2,000 V. vulnificus cells per EIA well. Epitope FRBT37 was labile at 70 degrees C for 30 min. Immunoblot and EIA plate formats reduced assay time and facilitated handling large numbers of test samples.


Assuntos
Técnicas Imunoenzimáticas , Ostreidae/microbiologia , Microbiologia do Solo , Vibrio/isolamento & purificação , Microbiologia da Água , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Reações Cruzadas , Água do Mar , Vibrio/imunologia
2.
J Appl Bacteriol ; 63(4): 335-41, 1987 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-3325483

RESUMO

Monoclonal antibodies were produced to whole cells of heat-treated Escherichia coli. Balb/c mice were immunized with a pool of five strains of heat-treated E. coli, and the resulting hybridomas were screened by indirect immunoassay. E. coli strains other than those used for immunization were used for screening to detect hybridomas producing antibody that reacted with a large number of E. coli strains. Of 864 hybridomas, 32 reacted strongly with either two or all three of the strains used for screening; 15 were successfully cloned. Antibody from hybridoma 6H2 reacted with 35 of 68 (51%) E. coli; of 13 non-E. coli tested, only Enterobacter agglomerans was weakly positive. Hybridoma 9B12 antibody reacted with all six E. coli tested. Hybridoma 9B12, however, stopped producing antibody. Five hybridomas produced antibody which reacted with a majority of the bacteria tested whereas antibodies from two other hybridomas reacted with several E. coli and non-E. coli. Polyclonal antibodies produced to two strains of E. coli varied in the numbers of E. coli with which they reacted; both antisera cross-reacted with several non-E. coli.


Assuntos
Anticorpos Antibacterianos/biossíntese , Anticorpos Monoclonais/biossíntese , Escherichia coli/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Antígenos de Bactérias/imunologia , Hibridomas , Técnicas Imunoenzimáticas , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Imunoglobulina M/biossíntese , Imunoglobulina M/imunologia , Camundongos
3.
Appl Environ Microbiol ; 53(5): 1073-7, 1987 May.
Artigo em Inglês | MEDLINE | ID: mdl-3111364

RESUMO

Polyclonal antibodies to Escherichia coli beta-galactosidase, beta-glucuronidase, and glutamate decarboxylase were used in coagglutination tests for identification of these three enzymes in cell lysates. Enzyme capture assays were also developed for the detection of E. coli beta-galactosidase and beta-glucuronidase. The enzymes were released by using a gentle lysis procedure that did not interfere with antibody-enzyme interactions. All three enzymes were detected in 93% (51 of 55) of the E. coli strains tested by coagglutination; two of the three enzymes were identified in the remaining 7%. Of 42 non-E. coli tested by coagglutination, only four nonspecifically agglutinated either two or three of the anti-enzyme conjugates. Thirty-two (76%) non-E. coli isolates were negative by coagglutination for all three enzymes. The enzyme capture assay detected the presence of beta-galactosidase in seven of eight and beta-glucuronidase in all eight strains of E. coli tested. Some strains of beta-galactosidase-positive Citrobacter freundii and Enterobacter cloacae were also positive by the enzyme capture assay, indicating that the antibodies were not entirely specific for E. coli beta-galactosidase; however, five other gas-positive non-E. coli isolates were negative by the enzyme capture assay. The coagglutination tests and enzyme capture assays were rapid and sensitive methods for the detection of E. coli beta-galactosidase, beta-glucuronidase, and glutamate decarboxylase.


Assuntos
Escherichia coli/enzimologia , Galactosidases/análise , Glucuronidase/análise , Glutamato Descarboxilase/análise , beta-Galactosidase/análise , Testes de Aglutinação , Glucuronidase/imunologia , Glutamato Descarboxilase/imunologia , Técnicas Imunoenzimáticas , beta-Galactosidase/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA