Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ESC Heart Fail ; 7(5): 2468-2478, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32618141

RESUMO

AIMS: Natriuretic peptides are useful for diagnosis and prognostication of heart failure of any cause. Now, research aims to discover novel biomarkers that will more specifically define the heart failure phenotype. DNA methylation plays a critical role in the development of cardiovascular disease with the potential to predict fundamental pathogenic processes. There is a lack of data relating DNA methylation in heart failure that specifically focuses on patients with severe multi-vessel coronary artery disease. To begin to address this, we conducted a pilot study uniquely exploring the utility of powerful whole-genome methyl-binding domain-capture sequencing in a cohort of cardiac surgery patients, matched for the severity of their coronary artery disease, aiming to identify candidate peripheral blood DNA methylation markers of ischaemic cardiomyopathy and heart failure. METHODS AND RESULTS: We recruited a cohort of 20 male patients presenting for coronary artery bypass graft surgery with phenotypic extremes of heart failure but who otherwise share a similar coronary ischaemic burden, age, sex, and ethnicity. Methylation profiling in patient blood samples was performed using methyl-binding domain-capture sequencing. Differentially methylated regions were validated using targeted bisulfite sequencing. Gene set enrichment analysis was performed to identify differences in methylation at or near gene promoters in certain known Reactome pathways. We detected 567 188 methylation peaks of which our general linear model identified 68 significantly differentially methylated regions in heart failure with a false discovery rate <0.05. Of these regions, 48 occurred within gene bodies and 25 were located near enhancer elements, some within coding genes and some in non-coding genes. Gene set enrichment analyses identified 103 significantly enriched gene sets (false discovery rate <0.05) in heart failure. Validation analysis of regions with the strongest differential methylation data was performed for two genes: HDAC9 and the uncharacterized miRNA gene MIR3675. Genes of particular interest as novel candidate markers of the heart failure phenotype with reduced methylation were HDAC9, JARID2, and GREM1 and with increased methylation PDSS2. CONCLUSIONS: We demonstrate the utility of methyl-binding domain-capture sequencing to evaluate peripheral blood DNA methylation markers in a cohort of cardiac surgical patients with severe multi-vessel coronary artery disease and phenotypic extremes of heart failure. The differential methylation status of specific coding genes identified are candidates for larger longitudinal studies. We have further demonstrated the value and feasibility of examining DNA methylation during the perioperative period to highlight biological pathways and processes contributing to complex phenotypes.


Assuntos
Doença da Artéria Coronariana , Insuficiência Cardíaca , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Insuficiência Cardíaca/genética , Humanos , Masculino , Projetos Piloto
2.
Protein Eng Des Sel ; 32(2): 67-76, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31504890

RESUMO

Aggregation of islet amyloid polypeptide (IAPP) into islet amyloid results in ß-cell toxicity in human type 2 diabetes. To determine the effect of islet amyloid formation on gene expression, we performed ribonucleic acid (RNA) sequencing (RNA-seq) analysis using cultured islets from either wild-type mice (mIAPP), which are not amyloid prone, or mice that express human IAPP (hIAPP), which develop amyloid. Comparing mIAPP and hIAPP islets, 5025 genes were differentially regulated (2439 upregulated and 2586 downregulated). When considering gene sets (reactomes), 248 and 52 pathways were up- and downregulated, respectively. Of the top 100 genes upregulated under two conditions of amyloid formation, seven were common. Of these seven genes, only steroidogenic acute regulatory protein (Star) demonstrated no effect of glucose per se to modify its expression. We confirmed this differential gene expression using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and also demonstrated the presence of STAR protein in islets containing amyloid. Furthermore, Star is a part of reactomes representing metabolism, metabolism of lipids, metabolism of steroid hormones, metabolism of steroids and pregnenolone biosynthesis. Thus, examining gene expression that is differentially regulated by islet amyloid has the ability to identify new molecules involved in islet physiology and pathology applicable to type 2 diabetes.


Assuntos
Amiloide/biossíntese , Ilhotas Pancreáticas/metabolismo , Fosfoproteínas/genética , RNA-Seq , Regulação para Cima , Animais , Relação Dose-Resposta a Droga , Glucose/farmacologia , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/efeitos dos fármacos
3.
PLoS Genet ; 15(6): e1008181, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31216276

RESUMO

The increasing worldwide prevalence of Hepatocellular carcinoma (HCC), characterized by resistance to conventional chemotherapy, poor prognosis and eventually mortality, place it as a prime target for new modes of prevention and treatment. Hepatitis C Virus (HCV) is the predominant risk factor for HCC in the US and Europe. Multiple epidemiological studies showed that sustained virological responses (SVR) following treatment with the powerful direct acting antivirals (DAAs), which have replaced interferon-based regimes, do not eliminate tumor development. We aimed to identify an HCV-specific pathogenic mechanism that persists post SVR following DAAs treatment. We demonstrate that HCV infection induces genome-wide epigenetic changes by performing chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) for histone post-translational modifications that are epigenetic markers for active and repressed chromatin. The changes in histone modifications correlate with reprogramed host gene expression and alter signaling pathways known to be associated with HCV life cycle and HCC. These epigenetic alterations require the presence of HCV RNA or/and expression of the viral proteins in the cells. Importantly, the epigenetic changes induced following infection persist as an "epigenetic signature" after virus eradication by DAAs treatment, as detected using in vitro HCV infection models. These observations led to the identification of an 8 gene signature that is associated with HCC development and demonstrate persistent epigenetic alterations in HCV infected and post SVR liver biopsy samples. The epigenetic signature was reverted in vitro by drugs that inhibit epigenetic modifying enzyme and by the EGFR inhibitor, Erlotinib. This epigenetic "scarring" of the genome, persisting following HCV eradication, suggest a novel mechanism for the persistent pathogenesis of HCV after its eradication by DAAs. Our study offers new avenues for prevention of the persistent oncogenic effects of chronic hepatitis infections using specific drugs to revert the epigenetic changes to the genome.


Assuntos
Carcinoma Hepatocelular/genética , Epigênese Genética/genética , Hepacivirus/genética , Hepatite C/genética , Neoplasias Hepáticas/genética , Idoso , Antivirais/administração & dosagem , Biópsia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Cromatina/genética , Epigênese Genética/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepacivirus/patogenicidade , Hepatite C/tratamento farmacológico , Hepatite C/patologia , Hepatite C/virologia , Código das Histonas/genética , Histonas/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Interferons/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Resposta Viral Sustentada
4.
Epilepsia ; 60(6): 1091-1103, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31074842

RESUMO

OBJECTIVES: Focal cortical dysplasia (FCD) is a major cause of drug-resistant focal epilepsy in children, and the clinicopathological classification remains a challenging issue in daily practice. With the recent progress in DNA methylation-based classification of human brain tumors we examined whether genomic DNA methylation and gene expression analysis can be used to also distinguish human FCD subtypes. METHODS: DNA methylomes and transcriptomes were generated from massive parallel sequencing in 15 surgical FCD specimens, matched with 5 epilepsy and 6 nonepilepsy controls. RESULTS: Differential hierarchical cluster analysis of DNA methylation distinguished major FCD subtypes (ie, Ia, IIa, and IIb) from patients with temporal lobe epilepsy patients and nonepileptic controls. Targeted panel sequencing identified a novel likely pathogenic variant in DEPDC5 in a patient with FCD type IIa. However, no enrichment of differential DNA methylation or gene expression was observed in mechanistic target of rapamycin (mTOR) pathway-related genes. SIGNIFICANCE: Our studies extend the evidence for disease-specific methylation signatures toward focal epilepsies in favor of an integrated clinicopathologic and molecular classification system of FCD subtypes incorporating genomic methylation.


Assuntos
Metilação de DNA/genética , Malformações do Desenvolvimento Cortical/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise por Conglomerados , DNA/genética , Epilepsias Parciais/classificação , Epilepsias Parciais/genética , Feminino , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/classificação , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Pessoa de Meia-Idade , RNA Mensageiro/genética , Serina-Treonina Quinases TOR/genética , Bancos de Tecidos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Transcriptoma , Adulto Jovem
5.
Nucleic Acids Res ; 47(5): 2455-2471, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30698808

RESUMO

Hepatitis C virus (HCV) infection is the leading cause of chronic hepatitis, which often results in liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). HCV possesses an RNA genome and its replication is confined to the cytoplasm. Yet, infection with HCV leads to global changes in gene expression, and chromosomal instability (CIN) in the host cell. The mechanisms by which the cytoplasmic virus affects these nuclear processes are elusive. Here, we show that HCV modulates the function of the Structural Maintenance of Chromosome (SMC) protein complex, cohesin, which tethers remote regions of chromatin. We demonstrate that infection of hepatoma cells with HCV leads to up regulation of the expression of the RAD21 cohesin subunit and changes cohesin residency on the chromatin. These changes regulate the expression of genes associated with virus-induced pathways. Furthermore, siRNA downregulation of viral-induced RAD21 reduces HCV infection. During mitosis, HCV infection induces hypercondensation of chromosomes and the appearance of multi-centrosomes. We provide evidence that the underlying mechanism involves the viral NS3/4 protease and the cohesin regulator, WAPL. Altogether, our results provide the first evidence that HCV induces changes in gene expression and chromosome structure of infected cells by modulating cohesin.


Assuntos
Proteínas de Transporte/genética , Hepacivirus/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas/genética , Serina Proteases/genética , Proteínas não Estruturais Virais/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/virologia , Cromatina/genética , Instabilidade Cromossômica/genética , Proteínas Cromossômicas não Histona/genética , Citoplasma/virologia , Proteínas de Ligação a DNA , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/virologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Mitose/genética , Replicação Viral/genética , Coesinas
6.
Mol Nutr Food Res ; 62(14): e1800134, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29882289

RESUMO

SCOPE: Early life nutrition has long-lasting influence in adults through key mediators that modulate epigenetic states, although the determinants involved that underlie this response remain controversial. Because of the similarities between metabolic, physiological, and endocrine changes and those occurring in human type 2 diabetes, we studied the interaction of diet during pregnancy regulating RNA adenosine methylation (N6-methyladenosine [m6A]) and the transcriptome in Psammomys obesus. METHODS AND RESULTS: Breeding pairs were randomly allocated standard diet (total digestible energy 18 MJ kg-1 ) or low-fat diet (15 MJ kg-1 ). Offspring were weaned onto the low-fat diet at 4 weeks of age and given ad libitum access, resulting in two experimental groups: 1) male offspring of animals fed a low-fat diet and weaned onto the low-fat diet and 2) male offspring of animals fed a standard diet and weaned onto the low-fat diet. Hypothalamic RNA was used to assess m6A by immunoprecipitation. Parental low-fat diet alters the metabolic phenotype in offspring. An association between parental diet and hypothalamic m6A was observed in regulating the expression of FTO and METTL3 in the offspring. CONCLUSIONS: We propose the regulatory capacity is now broadened for the first time to include m6A in developmental programming and obesity phenotype.

7.
J Am Soc Nephrol ; 29(5): 1437-1448, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29490938

RESUMO

Background The failure of spontaneous resolution underlies chronic inflammatory conditions, including microvascular complications of diabetes such as diabetic kidney disease. The identification of endogenously generated molecules that promote the physiologic resolution of inflammation suggests that these bioactions may have therapeutic potential in the context of chronic inflammation. Lipoxins (LXs) are lipid mediators that promote the resolution of inflammation.Methods We investigated the potential of LXA4 and a synthetic LX analog (Benzo-LXA4) as therapeutics in a murine model of diabetic kidney disease, ApoE-/- mice treated with streptozotocin.Results Intraperitoneal injection of LXs attenuated the development of diabetes-induced albuminuria, mesangial expansion, and collagen deposition. Notably, LXs administered 10 weeks after disease onset also attenuated established kidney disease, with evidence of preserved kidney function. Kidney transcriptome profiling defined a diabetic signature (725 genes; false discovery rate P≤0.05). Comparison of this murine gene signature with that of human diabetic kidney disease identified shared renal proinflammatory/profibrotic signals (TNF-α, IL-1ß, NF-κB). In diabetic mice, we identified 20 and 51 transcripts regulated by LXA4 and Benzo-LXA4, respectively, and pathway analysis identified established (TGF-ß1, PDGF, TNF-α, NF-κB) and novel (early growth response-1 [EGR-1]) networks activated in diabetes and regulated by LXs. In cultured human renal epithelial cells, treatment with LXs attenuated TNF-α-driven Egr-1 activation, and Egr-1 depletion prevented cellular responses to TGF-ß1 and TNF-αConclusions These data demonstrate that LXs can reverse established diabetic complications and support a therapeutic paradigm to promote the resolution of inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Lipoxinas/uso terapêutico , Albuminúria/etiologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Colágeno/metabolismo , Diabetes Mellitus Experimental , Nefropatias Diabéticas/complicações , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Mesângio Glomerular/patologia , Humanos , Injeções Intraperitoneais , Lipoxinas/farmacologia , Masculino , Camundongos Knockout para ApoE , NF-kappa B/genética , Fator de Crescimento Derivado de Plaquetas/genética , Transcriptoma , Fator de Crescimento Transformador beta1/genética , Fator de Necrose Tumoral alfa/genética
8.
Acta Neuropathol Commun ; 6(1): 17, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482641

RESUMO

Traumatic brain injury (TBI) induces a wide variety of cellular and molecular changes that can continue for days to weeks to months, leading to functional impairments. Currently, there are no pharmacotherapies in clinical use that favorably modify the post-TBI outcome, due in part to limited understanding of the mechanisms of TBI-induced pathologies. Our system biology analysis tested the hypothesis that chronic transcriptomics changes induced by TBI are controlled by altered DNA-methylation in gene promoter areas or by transcription factors. We performed genome-wide methyl binding domain (MBD)-sequencing (seq) and RNA-seq in perilesional, thalamic, and hippocampal tissue sampled at 3 months after TBI induced by lateral fluid percussion in adult male Sprague-Dawley rats. We investigated the regulated molecular networks and mechanisms underlying the chronic regulation, particularly DNA methylation and transcription factors. Finally, we identified compounds that modulate the transcriptomics changes and could be repurposed to improve recovery. Unexpectedly, DNA methylation was not a major regulator of chronic post-TBI transcriptomics changes. On the other hand, the transcription factors Cebpd, Pax6, Spi1, and Tp73 were upregulated at 3 months after TBI (False discovery rate < 0.05), which was validated using digital droplet polymerase chain reaction. Transcription regulatory network analysis revealed that these transcription factors regulate apoptosis, inflammation, and microglia, which are well-known contributors to secondary damage after TBI. Library of Integrated Network-based Cellular Signatures (LINCS) analysis identified 118 pharmacotherapies that regulate the expression of Cebpd, Pax6, Spi1, and Tp73. Of these, the antidepressant and/or antipsychotic compounds trimipramine, rolipramine, fluspirilene, and chlorpromazine, as well as the anti-cancer therapies pimasertib, tamoxifen, and vorinostat were strong regulators of the identified transcription factors, suggesting their potential to modulate the regulated transcriptomics networks to improve post-TBI recovery.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Fator de Transcrição PAX6/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Transcriptoma/fisiologia , Proteína Tumoral p73/metabolismo , Animais , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Doença Crônica , Metilação de DNA , Modelos Animais de Doenças , Masculino , Ratos Sprague-Dawley , Transcriptoma/efeitos dos fármacos , Regulação para Cima
9.
Circulation ; 136(12): 1123-1139, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28733351

RESUMO

BACKGROUND: The inability of the adult mammalian heart to regenerate following injury represents a major barrier in cardiovascular medicine. In contrast, the neonatal mammalian heart retains a transient capacity for regeneration, which is lost shortly after birth. Defining the molecular mechanisms that govern regenerative capacity in the neonatal period remains a central goal in cardiac biology. Here, we assemble a transcriptomic framework of multiple cardiac cell populations during postnatal development and following injury, which enables comparative analyses of the regenerative (neonatal) versus nonregenerative (adult) state for the first time. METHODS: Cardiomyocytes, fibroblasts, leukocytes, and endothelial cells from infarcted and noninfarcted neonatal (P1) and adult (P56) mouse hearts were isolated by enzymatic dissociation and fluorescence-activated cell sorting at day 3 following surgery. RNA sequencing was performed on these cell populations to generate the transcriptome of the major cardiac cell populations during cardiac development, repair, and regeneration. To complement our transcriptomic data, we also surveyed the epigenetic landscape of cardiomyocytes during postnatal maturation by performing deep sequencing of accessible chromatin regions by using the Assay for Transposase-Accessible Chromatin from purified mouse cardiomyocyte nuclei (P1, P14, and P56). RESULTS: Profiling of cardiomyocyte and nonmyocyte transcriptional programs uncovered several injury-responsive genes across regenerative and nonregenerative time points. However, the majority of transcriptional changes in all cardiac cell types resulted from developmental maturation from neonatal stages to adulthood rather than activation of a distinct regeneration-specific gene program. Furthermore, adult leukocytes and fibroblasts were characterized by the expression of a proliferative gene expression network following infarction, which mirrored the neonatal state. In contrast, cardiomyocytes failed to reactivate the neonatal proliferative network following infarction, which was associated with loss of chromatin accessibility around cell cycle genes during postnatal maturation. CONCLUSIONS: This work provides a comprehensive framework and transcriptional resource of multiple cardiac cell populations during cardiac development, repair, and regeneration. Our findings define a regulatory program underpinning the neonatal regenerative state and identify alterations in the chromatin landscape that could limit reinduction of the regenerative program in adult cardiomyocytes.


Assuntos
Perfilação da Expressão Gênica , Coração/fisiologia , Transcriptoma , Animais , Animais Recém-Nascidos , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes , Leucócitos/citologia , Leucócitos/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , RNA/isolamento & purificação , RNA/metabolismo , Regeneração/fisiologia , Análise de Sequência de RNA , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cell Stem Cell ; 13(1): 117-30, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23770079

RESUMO

Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44(+) progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44(+)p27(+) cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27(+) cells and their proliferation. Our results suggest that pathways controlling p27(+) mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.


Assuntos
Neoplasias da Mama/etiologia , Linhagem da Célula , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Perfilação da Expressão Gênica , Glândulas Mamárias Humanas/citologia , Paridade/genética , Células-Tronco/citologia , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Glândulas Mamárias Humanas/metabolismo , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células-Tronco/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA