Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(10): 2914-2928, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37641405

RESUMO

Fibroblast activation protein (FAP) is a cell surface serine protease that is highly expressed on reactive stromal fibroblasts, such as cancer-associated fibroblasts (CAFs), and generally absent in healthy adult tissues. FAP expression in the tumor stroma has been detected in more than 90% of all carcinomas, rendering CAFs excellent target cells for a tumor site-specific adenoviral delivery of cancer therapeutics. Here, we present a tropism-modified human adenovirus 5 (Ad5) vector that targets FAP through trivalent, designed ankyrin repeat protein-based retargeting adapters. We describe the development and validation of these adapters via cell-based screening assays and demonstrate adapter-mediated Ad5 retargeting to FAP+ fibroblasts in vitro and in vivo. We further show efficient in vivo delivery and in situ production of a therapeutic payload by CAFs in the tumor microenvironment (TME), resulting in attenuated tumor growth. We thus propose using our FAP-Ad5 vector to convert CAFs into a "biofactory," secreting encoded cancer therapeutics into the TME to enable a safe and effective cancer treatment.

2.
Nat Commun ; 12(1): 3790, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145240

RESUMO

The receptor tyrosine kinase HER2 acts as oncogenic driver in numerous cancers. Usually, the gene is amplified, resulting in receptor overexpression, massively increased signaling and unchecked proliferation. However, tumors become frequently addicted to oncogenes and hence are druggable by targeted interventions. Here, we design an anti-HER2 biparatopic and tetravalent IgG fusion with a multimodal mechanism of action. The molecule first induces HER2 clustering into inactive complexes, evidenced by reduced mobility of surface HER2. However, in contrast to our earlier binders based on DARPins, clusters of HER2 are thereafter robustly internalized and quantitatively degraded. This multimodal mechanism of action is found only in few of the tetravalent constructs investigated, which must target specific epitopes on HER2 in a defined geometric arrangement. The inhibitory effect of our antibody as single agent surpasses the combination of trastuzumab and pertuzumab as well as its parental mAbs in vitro and it is effective in a xenograft model.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/terapia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Feminino , Células HeLa , Humanos , Imunoglobulina G/imunologia , Imunoterapia/métodos , Células MCF-7 , Camundongos , Camundongos SCID , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Oncoimmunology ; 10(1): 1869389, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33520408

RESUMO

Based on the success of tumor-infiltrating lymphocytes (TIL)-based therapies, personalized adoptive cell therapies (ACT) targeting neoantigens have the potential to become a disruptive technology and lead to highly effective treatments for cancer patients for whom no other options exist. ACT of TIL, peripheral blood or gene-engineered peripheral blood lymphocytes (PBLs) targeting neoantigens is a highly personalized intervention that requires three discrete steps: i) Identification of suitable personal targets (neoantigens), ii) selection of T cells or their T cell receptors (TCRs) that are specific for the identified neoantigens and iii) expansion of the selected T cell population or generation of sufficient number of TCR modified T cells. In this review, we provide an introduction into challenges and approaches to identify neoantigens and to select the Adoptive Cell Therapy, ACT, Neoantigen, T cell, Cancer respective neoantigen-reactive T cells for use in ACT.


Assuntos
Linfócitos do Interstício Tumoral , Linfócitos T , Antígenos de Neoplasias/genética , Humanos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética
4.
ACS Chem Biol ; 14(6): 1154-1163, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31050891

RESUMO

Cell surface proteins are key regulators of fundamental cellular processes and, therefore, often at the root of human diseases. Thus, a large number of targeted drugs which are approved or under development act upon cell surface proteins. Although down-regulation of surface proteins by many natural ligands is well-established, the ability of drug candidates to cause internalization or degradation of the target is only recently moving into focus. This property is important both for the pharmacokinetics and pharmacodynamics of the drug but may also constitute a potential resistance mechanism. The enormous numbers of drug candidates targeting cell surface molecules, comprising small molecules, antibodies, or alternative protein scaffolds, necessitate methods for the investigation of internalization and degradation in high throughput. Here, we present a generic high-throughput assay protocol, which allows the simultaneous and independent quantification of internalization and degradation of surface proteins on a single-cell level. Because we fuse a HaloTag to the cell surface protein of interest and exploit the differential cell permeability of two fluorescent HaloTag ligands, no labeling of the molecules to be screened is required. In contrast to previously described approaches, our homogeneous assay is performed with adherent live cells in a 96-well format. Through channel rescaling, we are furthermore able to obtain true relative abundances of surface and internal protein. We demonstrate the applicability of our procedure to three major drug targets, EGFR, HER2, and EpCAM, examining a selection of well-investigated but also novel small molecule ligands and protein affinity reagents.


Assuntos
Endocitose , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Membrana/análise , Sistemas de Liberação de Medicamentos , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores ErbB/metabolismo , Corantes Fluorescentes/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Proteólise , Reprodutibilidade dos Testes
5.
J Mol Biol ; 431(10): 2020-2039, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30930049

RESUMO

MET, the product of the c-MET proto-oncogene, and its ligand hepatocyte growth factor/scatter factor (HGF/SF) control survival, proliferation and migration during development and tissue regeneration. HGF/SF-MET signaling is equally crucial for growth and metastasis of a variety of human tumors, but resistance to small-molecule inhibitors of MET kinase develops rapidly and therapeutic antibody targeting remains challenging. We made use of the designed ankyrin repeat protein (DARPin) technology to develop an alternative approach for inhibiting MET. We generated a collection of MET-binding DARPins covering epitopes in the extracellular MET domains and created comprehensive sets of bi-paratopic fusion proteins. This new class of molecules efficiently inhibited MET kinase activity and downstream signaling, caused receptor downregulation and strongly inhibited the proliferation of MET-dependent gastric carcinoma cells carrying MET locus amplifications. MET-specific bi-paratopic DARPins may represent a novel and potent strategy for therapeutic targeting of MET and other receptors, and this study has elucidated their mode of action.


Assuntos
Repetição de Anquirina , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/química , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-met/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia
6.
Sci Signal ; 12(565)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670633

RESUMO

Drug-induced compensatory signaling and subsequent rewiring of the signaling pathways that support cell proliferation and survival promote the development of acquired drug resistance in tumors. Here, we sought to analyze the adaptive kinase response in cancer cells after distinct treatment with agents targeting human epidermal growth factor receptor 2 (HER2), specifically those that induce either only temporary cell cycle arrest or, alternatively, apoptosis in HER2-overexpressing cancers. We compared trastuzumab, ARRY380, the combination thereof, and a biparatopic, HER2-targeted designed ankyrin repeat protein (DARPin; specifically, 6L1G) and quantified the phosphoproteome by isobaric tagging using tandem mass tag liquid chromatography/tandem mass spectrometry (TMT LC-MS/MS). We found a specific signature of persistently phosphorylated tyrosine peptides after the nonapoptotic treatments, which we used to distinguish between different treatment-induced cancer cell fates. Next, we analyzed the activation of serine/threonine and tyrosine kinases after treatment using a bait peptide chip array and predicted the corresponding active kinases. Through a combined system-wide analysis, we identified a common adaptive kinase response program that involved the activation of focal adhesion kinase 1 (FAK1), protein kinase C-δ (PRKCD), and Ephrin (EPH) family receptors. These findings reveal potential targets to prevent adaptive resistance to HER2-targeted therapies.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Quinases/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Trastuzumab/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatografia Líquida , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Receptor ErbB-2/metabolismo , Espectrometria de Massas em Tandem
7.
J Biotechnol ; 176: 29-39, 2014 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-24553072

RESUMO

Human host cell lines for the production of biopharmaceutical proteins are of interest due to differences in the glycosylation patterns of human and animal cell lines. Specifically, sialylation, which has a major impact on half-life and immunogenicity of recombinant biopharmaceuticals, differs markedly. Here, we established and characterized an immortalized well documented and serum-free host cell line, RS, from primary human renal proximal tubular epithelial cells (RPTEC). In order to test its capacity to produce complex glycosylated proteins, stable recombinant human erythropoietin (rhEpo) producing clones were generated. The clone with highest productivity, RS-1C9 was further characterized and showed stable productivity. Biological activity was observed in in vitro assays and 28% of rhEpo glyco-isoforms produced by RS-1C9 were in range and distribution of the biological reference standard (BRP) isoform, as compared to 11.5% of a CHO based rhEpo. Additionally, cellular α-2,6 sialylation, Galactose-alpha-1,3-galactose (alpha-Gal) and N-glycolylneuraminic acid (NeuGc) patterns compare favourably to CHO cells. While productivity of RS still needs optimization, its amenability to upscaling in bioreactors, its production of glyco-isoforms that will increase yields after down-stream processing of about 2.5 fold, presence of sialylation and lack of Neu5Gc recommend RS as alternative human host cell line for production of biopharmaceuticals.


Assuntos
Engenharia Celular/métodos , Células Epiteliais/metabolismo , Eritropoetina/metabolismo , Túbulos Renais Proximais/citologia , Animais , Biomarcadores/análise , Células CHO , Linhagem Celular , Cricetulus , Eritropoetina/genética , Glicosilação , Humanos , Isoformas de Proteínas/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA