Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Biochem ; 176(3): 205-215, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38740386

RESUMO

The viral infectivity factor (Vif) of human immunodeficiency virus 1 forms a complex with host proteins, designated as Vif-CBFß-ELOB-ELOC-CUL5 (VßBCC), initiating the ubiquitination and subsequent proteasomal degradation of the human antiviral protein APOBEC3G (A3G), thereby negating its antiviral function. Whilst recent cryo-electron microscopy (cryo-EM) studies have implicated RNA molecules in the Vif-A3G interaction that leads to A3G ubiquitination, our findings indicated that the VßBCC complex can also directly impede A3G-mediated DNA deamination, bypassing the proteasomal degradation pathway. Employing the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method, we have identified RNA aptamers with high affinity for the VßBCC complex. These aptamers not only bind to the VßBCC complex but also reinstate A3G's DNA deamination activity by inhibiting the complex's function. Moreover, we delineated the sequences and secondary structures of these aptamers, providing insights into the mechanistic aspects of A3G inhibition by the VßBCC complex. Analysis using selected aptamers will enhance our understanding of the inhibition of A3G by the VßBCC complex, offering potential avenues for therapeutic intervention.


Assuntos
Aptâmeros de Nucleotídeos , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Humanos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Desaminase APOBEC-3G/metabolismo , Desaminase APOBEC-3G/genética , Desaminase APOBEC-3G/química , Subunidade beta de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/química , Técnica de Seleção de Aptâmeros , HIV-1/metabolismo , Proteínas Culina
2.
J Phys Chem Lett ; 15(6): 1677-1685, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315662

RESUMO

The utility of alcohol as a hydrogen bonding donor is considered a providential avenue for moderating the high basicity and reactivity of the fluoride ion, typically used with large cations. However, the practicality of alcohol-fluoride systems in reactions is hampered by the limited understanding of the pertinent interactions between the OH group and F-. Therefore, this study comparatively investigates the thermal, structural, and physical properties of the CsF-2-propanol and CsF-1,1,1,3,3,3-hexafluoro-2-propanol systems to explicate the effects of the fluoroalkyl group on the interaction of alcohols and F-. The two systems exhibit vastly different phase diagrams despite the similar saturated concentrations. A combination of spectroscopic analyses, alcohol activity coefficient measurements, and theoretical calculations reveal the fluorinated alcohol system harbors the stronger OH···F- interactions between the two systems. The diffusion coefficient and ionic conductivity measurements attribute the present results to disparate states of ion association in the two systems.

3.
Biophys J ; 123(3): 294-306, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38115583

RESUMO

HIV-1 Vif is known to counteract the antiviral activity of human apolipoprotein B mRNA-editing catalytic polypeptide-like (A3), a cytidine deaminase, in various ways. However, the precise mechanism behind this interaction has remained elusive. Within infected cells, Vif forms a complex called VßBCC, comprising CBFß and the components of E3 ubiquitin ligase, Elongin B, Elongin C, and Cullin5. Together with the ubiquitin-conjugating enzyme, VßBCC induces ubiquitination-mediated proteasomal degradation of A3. However, Vif exhibits additional counteractive effects. In this study, we elucidate that VßBCC inhibits deamination by A3G, A3F, and A3B independently of proteasomal degradation. Surprisingly, we discovered that this inhibition for A3G is directly attributed to the interaction between VßBCC and the C-terminal domain of A3G. Previously, it was believed that Vif did not interact with the C-terminal domain. Our findings suggest that inhibiting the interaction between VßBCC and the C-terminal domain, as well as the N-terminal domain known to be targeted for ubiquitination, of A3G may be needed to prevent counteraction by Vif.


Assuntos
HIV-1 , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Humanos , Citosina Desaminase/metabolismo , HIV-1/metabolismo , Ligação Proteica , Proteólise
4.
Sci Rep ; 11(1): 9523, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947944

RESUMO

Fused in sarcoma/translocated in liposarcoma (FUS/TLS) is a multitasking RNA/DNA binding protein. FUS aggregation is implicated in various neurodegenerative diseases. RNA was suggested to modulate phase transition of FUS. Here, we found that FUS transforms into the amorphous aggregation state as an instant response to the shear stress caused by usual pipetting even at a low FUS concentration, 100 nM. It was revealed that non-coding RNA can suppress the transformation of FUS into aggregates. The suppressive effect of RNA on FUS aggregation is sequence-dependent. These results suggested that the non-coding RNA could be a prospective suppressor of FUS aggregation caused by mechanistic stress in cells. Our finding might pave the way for more research on the role of RNAs as aggregation inhibitors, which could facilitate the development of therapies for neurodegenerative diseases.


Assuntos
RNA não Traduzido/genética , Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a DNA/genética , Agregados Proteicos/genética , Proteínas de Ligação a RNA/genética , Resistência ao Cisalhamento/fisiologia
5.
Int J Biol Macromol ; 183: 992-1001, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33964269

RESUMO

Sphaerotilus natans is a filamentous sheath-forming bacterium commonly found in activated sludge. Its sheath is assembled from a thiolic glycoconjugate called thiopeptidoglycan. S. montanus ATCC-BAA-2725 is a sheath-forming member of stream biofilms, and its sheath is morphologically similar to that of S. natans. However, it exhibits heat susceptibility, which distinguishes it from the S. natans sheath. In this study, chemical composition and solid-state NMR analyses suggest that the S. montanus sheath is free of cysteine, indicating that disulfide linkage is not mandatory for sheath formation. The S. montanus sheath was successfully solubilized by N-acetylation, allowing solution-state NMR analysis to determine the sugar sequence. The sheath was susceptible to thiopeptidoglycan lyase prepared from the thiopeptidoglycan-assimilating bacterium, Paenibacillus koleovorans. The reducing ends of the enzymatic digests were labeled with 4-aminobenzoic acid ethyl ester, followed by HPLC. Two derivatives were detected, and their structures were determined. We found that the sheath has no peptides and is assembled as follows: [→4)-ß-d-GlcA-(1→4)-ß-d-Glc-(1→3)-ß-d-GalNAc-(1→4)-α-d-GalNAc-(1→4)-α-d-GalN-(1→]n (ß-d-Glc and α-d-GalNAc are stoichiometrically and substoichiometrically 3-O-acetylated, respectively). Thiopeptidoglycan lyase was thus confirmed to cleave the 1,4 linkage between α-d-GalN and ß-d-GlcA, regardless of the peptide moiety. Furthermore, vital fluorescent staining of the sheath demonstrated that elongation takes place at the tips, as with the S. natans sheath.


Assuntos
Polissacarídeo-Liases/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Sphaerotilus/química , Paenibacillus/enzimologia
6.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801762

RESUMO

Origin recognition complex (ORC) binds to replication origins in eukaryotic DNAs and plays an important role in replication. Although yeast ORC is known to sequence-specifically bind to a replication origin, how human ORC recognizes a replication origin remains unknown. Previous genome-wide studies revealed that guanine (G)-rich sequences, potentially forming G-quadruplex (G4) structures, are present in most replication origins in human cells. We previously suggested that the region comprising residues 413-511 of human ORC subunit 1, hORC1413-511, binds preferentially to G-rich DNAs, which form a G4 structure in the absence of hORC1413-511. Here, we investigated the interaction of hORC1413-511 with various G-rich DNAs derived from human c-myc promoter and telomere regions. Fluorescence anisotropy revealed that hORC1413-511 binds preferentially to DNAs that have G4 structures over ones having double-stranded structures. Importantly, circular dichroism (CD) and nuclear magnetic resonance (NMR) showed that those G-rich DNAs retain the G4 structures even after binding with hORC1413-511. NMR chemical shift perturbation analyses revealed that the external G-tetrad planes of the G4 structures are the primary binding sites for hORC1413-511. The present study suggests that human ORC1 may recognize replication origins through the G4 structure.


Assuntos
DNA/genética , Quadruplex G , Complexo de Reconhecimento de Origem , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Telômero/ultraestrutura , Sítios de Ligação , Replicação do DNA , Polarização de Fluorescência , Humanos , Espectroscopia de Ressonância Magnética , Fases de Leitura Aberta , Complexo de Reconhecimento de Origem/genética , Ligação Proteica , Origem de Replicação
7.
Kyobu Geka ; 74(3): 209-212, 2021 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-33831875

RESUMO

A 64-year-old woman diagnosed as primary lung cancer was admitted for surgery. Right lower lobectomy and ND2a-1 nodal dissection was performed under video-assisted thoracic surgery( VATS). The membranous portion of intermediate bronchus was injured about length of 5 mm while dissecting subcarinal lymph nodes. The fistula was closed by knotted suture using 4-0 polydioxanone (PDS) and covered with pericardial fat pad. Although the postoperative course was uneventful and discharged at postoperative day (POD) nine, bloody sputum appeared and right pneumothorax developed at POD 11. Bronchoscopy revealed a slit-like bronchopleural fistula at intermediate bronchus. By continuous thoracic drainage, the fistula successfully closed at POD 13.


Assuntos
Fístula Brônquica , Neoplasias Pulmonares , Doenças Pleurais , Brônquios , Fístula Brônquica/diagnóstico por imagem , Fístula Brônquica/etiologia , Fístula Brônquica/cirurgia , Tratamento Conservador , Feminino , Humanos , Neoplasias Pulmonares/cirurgia , Pessoa de Meia-Idade , Doenças Pleurais/etiologia , Doenças Pleurais/cirurgia , Pneumonectomia
8.
Chem Commun (Camb) ; 56(64): 9134-9137, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32643734

RESUMO

High-speed AFM revealed the conformational change of fused in sarcoma (FUS) from a compact to an extended structure upon binding of non-coding RNA, which is supposed to allow FUS to bind to CBP/p300 for transcriptional interference. Thus, a mechanistic insight into transcription regulation by FUS and non-coding RNA is provided.


Assuntos
RNA não Traduzido/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Ligantes de Maltose/química , Microscopia de Força Atômica , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Proteína FUS de Ligação a RNA/química
9.
Sci Rep ; 10(1): 2629, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060318

RESUMO

Translocated in liposarcoma (TLS)/fused in sarcoma (FUS) is a multitasking DNA/RNA binding protein implicated in cancer and neurodegenerative diseases. Upon DNA damage, TLS is recruited to the upstream region of the cyclin D1 gene (CCND1) through binding to the promotor associated non-coding RNA (pncRNA) that is transcribed from and tethered at the upstream region. Binding to pncRNA is hypothesized to cause the conformational change of TLS that enables its inhibitive interaction with histone acetyltransferases and resultant repression of CCND1 expression, although no experimental proof has been obtained. Here, the closed-to-open conformational change of TLS on binding pncRNA was implied by fluorescence resonance energy transfer. A small fragment (31 nucleotides) of the full-length pncRNA (602 nucleotides) was shown to be sufficient for the conformational change of TLS. Dissection of pncRNA identified the G-rich RNA sequence that is critical for the conformational change. The length of RNA was also revealed to be critical for the conformational change. Furthermore, it was demonstrated that the conformational change of TLS is caused by another target DNA and RNA, telomeric DNA and telomeric repeat-containing RNA. The conformational change of TLS on binding target RNA/DNA is suggested to be essential for biological functions.


Assuntos
RNA não Traduzido/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Sequência de Bases , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Humanos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , RNA não Traduzido/química , Proteína FUS de Ligação a RNA/química
10.
Biochim Biophys Acta Gen Subj ; 1864(2): 129346, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986508

RESUMO

BACKGROUND: APOBEC3F (A3F), a member of the human APOBEC3 (A3) family of cytidine deaminases, acts as an anti-HIV-1 factor by deaminating deoxycytidine in the complementary DNA of the viral genome. A full understanding of the deamination behavior of A3F awaits further investigation. METHODS: The real-time NMR method and uracil-DNA glycosylase assay were used to track the activities of the C-terminal domain (CTD) of A3F at different concentrations of A3F-CTD and ssDNA. The steady-state fluorescence anisotropy measurement was used to examine the binding between A3F-CTD and ssDNA with different lengths. The use of the A3F-CTD N214H mutant, having higher activity than the wild-type, facilitated the tracking of the reactions. RESULTS: A3F-CTD was found to efficiently deaminate the target deoxycytidine in long ssDNA in lower ssDNA concentration conditions ([A3F-CTD] ≫ [ssDNA]), while the target deoxycytidine in short ssDNA is deaminated efficiently in higher ssDNA concentration conditions ([A3F-CTD] ≪ [ssDNA]). This property is quite different from that of the previously studied A3 family member, A3B; the concentrations of the proteins and ssDNA had no effect. CONCLUSIONS: The concentrations of A3F-CTD and ssDNA substrates affect the ssDNA-length-dependence of deamination rate of the A3F-CTD. This unique property of A3F is rationally interpreted on the basis of its binding characteristics with ssDNA. GENERAL SIGNIFICANCE: The discovery of the unique property of A3F regarding the deamination rate deepens the understanding of its counteraction against HIV-1. Our strategy is applicable to investigate the other aspects of the A3 activities, such as those involved in the cancer development.


Assuntos
Citosina Desaminase/química , DNA de Cadeia Simples/química , Citidina Desaminase/química , Desaminação , Genoma Viral , HIV-1/genética , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Conformação Molecular , Mutação , Oligonucleotídeos/química , Ligação Proteica
11.
J Chem Inf Model ; 59(8): 3533-3544, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31282659

RESUMO

An oncoprotein MDM2 binds to the extreme N-terminal peptide region of a tumor suppressor protein p53 (p53NTD) and inhibits its anticancer activity. We recently discovered a peptide named MIP which exhibits much higher binding affinity for MDM2 than p53NTD. Experiments showed that the binding free energy (BFE) of MDM2-MIP is lower than that of MDM2-p53NTD by approximately -4 kcal/mol. Here, we develop a theoretical method which is successful in reproducing this quantitative difference and elucidating its physical origins. It enables us to decompose the BFE into a variety of energetic and entropic components, evaluate their relative magnitudes, and identify the physical factors driving or opposing the binding. It should be applicable also to the assessment of differences among ligands in the binding affinity for a particular receptor, which is a central issue in modern chemistry. In the MDM2 case, the higher affinity of MIP is ascribed to a larger gain of translational, configurational entropy of water upon binding. This result is useful to the design of a peptide possessing even higher affinity for MDM2 as a reliable drug against a cancer.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Especificidade por Substrato , Termodinâmica , Proteína Supressora de Tumor p53/química
12.
Biochem Biophys Res Commun ; 510(1): 177-183, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30683313

RESUMO

Ceriporiopsis subvermispora (C. subvermispora), one of the white-rot fungi, is known as a selective lignin degrader of the woody biomass. Glutathione S-transferases (GSTs) are multifunctional enzymes that are capable of catalyzing the reactions involved in detoxification and metabolic pathways. In this study, a GST of C. subvermispora, named CsGST63524, was overexpressed in E. coli, and then purified by affinity, anion exchange, and size exclusion column chromatography. The crystal structures of the CsGST63524 in ligand-free and complex with GSH were refined at 2.45 and 2.50 Šresolutions, respectively. The sulfur atom of glutathione forms a hydrogen bond with Ser21 of CsGST63524, indicating it is a serine-type GST. Mutagenesis of Ser21 unexpectedly indicated that this serine residue is not essential for the enzymatic activity of CsGST63524. Comparative sequence and structural analyses, together with functional mutagenesis, newly identified the enzymatically important non-canonical amino acid residues, Asn23 and Tyr45, other than the serine residue.


Assuntos
Coriolaceae/enzimologia , Glutationa Transferase/química , Mutagênese , Aminoácidos/fisiologia , Asparagina , Cristalografia por Raios X , Proteínas Fúngicas/química , Glutationa/química , Glutationa Transferase/genética , Glutationa Transferase/isolamento & purificação , Ligantes , Serina , Tirosina
13.
Adv Exp Med Biol ; 1103: 293-303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30484236

RESUMO

Ischemia-reperfusion injury (IRI) is one of the main causes of primary graft dysfunction that accounts for 25% of mortality after lung transplantation. Disruption of blood supply and subsequent reperfusion result in organ damage with activating innate and adaptive immune response, leading to inflammatory insults. The IRI after lung transplantation is primarily manifested by permeability pulmonary edema on the basis of pulmonary vascular endothelial cell injury as seen in acute respiratory distress syndrome (ARDS). Stem cells have potent anti-inflammatory and immunomodulatory properties through local paracrine mechanisms. The application of mesenchymal stem cells (MSCs) for ARDS as well as IRI in various organs, therefore, has been interested and extensively investigated in animal models with promising results. Furthermore, two recent clinical randomized, placebo-controlled pilot studies demonstrated that treatment of ARDS with MSCs appears to be safe and feasible.Muse cells are stress-tolerant and non-tumorigenic endogenous pluripotent-like stem cells. They comprise small proportions of cultured fibroblasts and MSCs and can be isolated from these populations. Muse cells are known to migrate to the damaged tissue after local or systemic administration, spontaneously differentiate into the tissue-compatible cells, and also secrete factors related to immunomodulation and tissue repair. We have recently shown the effect of Muse cells on ameliorating lung IRI in a rat model. With 2 h of warm ischemia and subsequent reperfusion on the left lung, the lung showed severe pulmonary edema. Administration of Muse cell through the left pulmonary artery immediately after reperfusion more significantly improved lung oxygenation capacity, compliance, and histological damage on days 1 and 3 after reperfusion compared with MSCs, and this was associated with higher expression levels of proteins related with anti-inflammation and tissue repair in the lung. Encouraging results of this study advocate further investigation of the ability of Muse cells to prevent and treat IRI after lung transplantation.


Assuntos
Lesão Pulmonar/terapia , Células-Tronco Pluripotentes/citologia , Traumatismo por Reperfusão/terapia , Transplante de Células-Tronco , Animais , Humanos , Pulmão , Ensaios Clínicos Controlados Aleatórios como Assunto , Ratos , Regeneração
14.
Sci Rep ; 8(1): 6538, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695732

RESUMO

Cross-linking between lignin and polysaccharide in plant cell-wall determines physical, chemical, and biological features of lignocellulosic biomass. Since Erdmann's first report in 1866, numerous studies have suggested the presence of a bond between hemicelluloses and lignin; however, no clear evidence for this interaction has been reported. We describe the first direct proof of covalent bonding between plant cell-wall polysaccharides and lignin. Nuclear magnetic resonance spectroscopy was used to observe the long-range correlations through an α-ether bond between lignin and the primary hydroxyl group of a mannose residue in glucomannan. Complete signal assignment of the cognate structural units was also achieved. Thus, we identified lignin-carbohydrate bonds by complete connectivity analysis from the phenylpropane unit to the carbohydrate moiety.

15.
FEBS Open Bio ; 8(2): 264-270, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29435416

RESUMO

Since the invention of systematic evolution of ligands by exponential enrichment, many short oligonucleotides (or aptamers) have been reported that can bind to a wide range of target molecules with high affinity and specificity. Previously, we reported an RNA aptamer that shows high affinity to the Runt domain (RD) of the AML1 protein, a transcription factor with roles in haematopoiesis and immune function. From kinetic and thermodynamic studies, it was suggested that the aptamer recognises a large surface area of the RD, using numerous weak interactions. In this study, we identified the secondary structure by nuclear magnetic resonance spectroscopy and performed a mutational study to reveal the residue critical for binding to the RD. It was suggested that the large contact area was formed by a DNA-mimicking motif and a multibranched loop, which confers the high affinity and specificity of binding.

16.
Sci Rep ; 8(1): 2864, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434328

RESUMO

The length of a telomere is regulated via elongation and shortening processes. Telomeric DNA and telomeric repeat-containing RNA (TERRA), which both contain G-rich repeated sequences, form G-quadruplex structures. Previously, translocated in liposarcoma (TLS) protein, also known as fused in sarcoma (FUS) protein, was found to form a ternary complex with the G-quadruplex structures of telomeric DNA and TERRA. We then showed that the third RGG motif of TLS, the RGG3 domain, is responsible for the complex formation. However, the structural basis for their binding remains obscure. Here, NMR-based binding assaying revealed the interactions in the binary and ternary complexes of RGG3 with telomeric DNA or/and TERRA. In the ternary complex, tyrosine bound exclusively to TERRA, while phenylalanine bound exclusively to telomeric DNA. Thus, tyrosine and phenylalanine each play a central role in the recognition of TERRA and telomeric DNA, respectively. Surprisingly in the binary complexes, RGG3 used both tyrosine and phenylalanine residues to bind to either TERRA or telomeric DNA. We propose that the plastic roles of tyrosine and phenylalanine are important for RGG3 to efficiently form the ternary complex, and thereby regulate the telomere shortening.


Assuntos
Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , RNA/metabolismo , Telômero/metabolismo , Sítios de Ligação , Quadruplex G , Humanos , Modelos Moleculares , Fenilalanina/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , RNA/química , Telômero/química , Telômero/genética , Encurtamento do Telômero , Tirosina/metabolismo
17.
Ann Thorac Surg ; 105(6): 1648-1654, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29486179

RESUMO

BACKGROUND: The presence of epidermal growth factor receptor (EGFR) mutations is an established prognostic factor for patients with advanced lung adenocarcinoma. Here, we examined whether EGFR mutation status is a prognostic factor for patients who had undergone surgery. METHODS: Clinicopathologic data from 1,463 patients who underwent complete surgical resection for lung adenocarcinoma between 2005 and 2012 were collected. Differences in postoperative recurrence-free survival and overall survival according to EGFR mutation status were evaluated. RESULTS: Of 835 eligible patients, the numbers of patients with wild-type EGFR (WT), exon 19 deletion (Ex19), and exon 21 L858R (Ex21) were 426, 175, and 234, respectively. Patients with Ex19 had a significantly higher incidence of extrathoracic recurrence than patients with Ex21 (p = 0.004). The 5-year recurrence-free survival rates for patients with WT, Ex19, and Ex21 were 63.0%, 67.5%, and 78.2%, respectively. The Ex21 group had a significantly longer recurrence-free survival than the WT group (p < 0.001) and the Ex19 group (p = 0.016). The 5-year overall survival for patients with WT, Ex19, and Ex21 were 76.9%, 86.5%, and 87.5%, respectively. Patients with Ex19 and Ex21 had a significantly longer overall survival than patients with WT (Ex19, p = 0.009; Ex21, p < 0.001). Multivariate analysis for recurrence-free survival showed that Ex19 was significantly associated with a worse prognosis than Ex21 (p = 0.019). CONCLUSIONS: Patients with Ex19 had significantly shorter recurrence-free survival and had extrathoracic recurrence more frequently than patients with Ex21 among patients with resected lung adenocarcinoma, implying that Ex19 could be a worse prognostic factor.


Assuntos
Adenocarcinoma de Pulmão/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Mutação/genética , Recidiva Local de Neoplasia/mortalidade , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/cirurgia , Idoso , Estudos de Coortes , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Pneumonectomia/métodos , Pneumonectomia/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Análise de Sobrevida
18.
Phys Chem Chem Phys ; 20(5): 3109-3117, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28825755

RESUMO

APOBEC3F (A3F), an apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family protein, catalyzes cytosine-to-uracil conversion in single-stranded (ss) DNA. A3F acts as an inhibitor of retrovirus replication and exhibits antiviral activity against viral infectivity factor (Vif)-deficient human immunodeficiency virus 1 (HIV-1). Previous studies have mostly been focused on the interaction between A3F and Vif, and the studies on A3F's deamination properties are limited. Here, we report comprehensive characterization of the deaminase activity and ssDNA binding of the C-terminal domain (CTD) of A3F. It was shown that the deaminase activity of A3F-CTD is affected by the nucleic acid residues adjacent to the target sequence, TC, and that TTCA/G are the most preferred sequences. A3F-CTD deaminates the target sequence in longer ssDNAs most efficiently. Mutation analysis identified the amino acid residues that are responsible for the deaminase activity and ssDNA binding in the loops surrounding the catalytic center. The functions of these residues were rationally interpreted on the basis of the co-crystal structure of A3A-ssDNA and the known roles of the equivalent amino acid residues found in other A3s. Furthermore, we demonstrated that the deaminase activity of A3F-CTD could be regulated through phosphorylation of a putative site, S216. Finally, A3F-CTD was found to be active in a wide pH range (5.5 to 9.5) with similar activity. Interestingly, the A3F-CTD N214H mutant exhibited a dramatic increase in activity at pH 5.5.


Assuntos
Aminoácidos/metabolismo , Citosina Desaminase/química , Sequência de Aminoácidos , Aminoácidos/química , Sequência de Bases , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , DNA de Cadeia Simples/metabolismo , Desaminação , Polarização de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
19.
Molecules ; 22(11)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144399

RESUMO

The development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire <--> particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease. Micro-scale analyses via TEM and AFM showed that G-rich DNA alone forms G-wires in the presence of Ca2+, and that the peptide disrupted this formation, resulting in the formation of particles. The addition of the protease and digestion of the peptide regenerated the G-wires. Macro-scale analyses by DLS, zeta potential, CD, and gel filtration were in agreement with the microscopic observations. These results imply that the secondary structure change (DNA G-quadruplex <--> DNA/PNA hybrid structure) induces a change in the well-formed nanostructure (G-wire <--> particles). Our findings demonstrate a control system for forming DNA G-wire structures dependent on protease activity using designed peptides. Such systems hold promise for regulating the formation of nanowire for various applications, including electronic circuits for use in nanobiotechnologies.


Assuntos
DNA/química , Quadruplex G , Nanofios/química , Peptídeo Hidrolases/química , Tamanho da Partícula , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , Propriedades de Superfície
20.
Lung Cancer ; 114: 23-30, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29173761

RESUMO

OBJECTIVE: It is unclear whether epidermal growth factor receptor (EGFR) mutation status is a risk factor for postoperative recurrence of surgically resected lung adenocarcinoma (ADC). Therefore, we conducted a multi-institutional study employing matched-pair analysis to compare recurrence-free survival (RFS) and overall survival (OS) of patients with lung ADC according to EGFR mutation status. METHODS: We collected the records of 909 patients who underwent surgical resection for lung ADC between 2005 and 2012 at five participating institutions and were also examined their EGFR mutation status. For each patient with an EGFR mutation, we selected one with the wild-type EGFR sequence and matched them according to institution, age, gender, smoking history, pathological stage (pStage), and adjuvant treatment. We compared RFS and OS of the matched cohort. RESULTS: The patients were allocated into groups (n=181 each) with mutated or wild-type EGFR sequences. Both cohorts had identical characteristics as follows: institution, median age (68 years), men (85, 47%), ever smokers (77, 43%), and pStage (IA, 108, 60%; IB, 48, 27%; II, 14, 8%; III, 11, 6%). The 3- and 5-year RFS rates of patients with mutated or wild-type EGFR sequence were 79%, 68% and 77%, 68%, respectively (p=0.557). The respective OS rates were 92%, 81%, and 89%, 79% (p=0.574). CONCLUSION: Matched-pair and multi-institutional analysis reveals that an EGFR mutation was not a significant risk factor for recurrence of patients with surgically resected lung adenocarcinoma.


Assuntos
Adenocarcinoma/cirurgia , Receptores ErbB/genética , Neoplasias Pulmonares/cirurgia , Análise por Pareamento , Mutação , Recidiva Local de Neoplasia/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/epidemiologia , Estadiamento de Neoplasias , Pneumonectomia/métodos , Período Pós-Operatório , Fatores de Risco , Fumar/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA