Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 298: 120126, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241298

RESUMO

None of the currently available wound dressings exhibit combined antibacterial and anti-inflammatory activity. Using polyelectrolyte complexation (PEC) between a cationic polysaccharide chitosan (CH) and an anionic glycosaminoglycan chondroitin sulfate (CS), we have developed a unique in-situ forming scaffold (CH-CS PEC), which develops at the wound site itself to influence the function of the wound bed cells. The current study demonstrated that CH-CS PEC could induce bacterial cell death through membrane pore formation and increased ROS production. Moreover, possibly due to its unique material properties including medium-soft viscoelasticity, porosity, and surface composition, CH-CS PEC could modulate macrophage function, increasing their phagocytic ability with low TNF-α and high IL-10 production. Faster wound closure and decreased CFU count was observed in an in-vivo infected wound model, with reduced NF-κB and increased VE-cadherin expression, indicating reduced inflammation and enhanced angiogenesis. In summary, this study exhibited that CH-CS PEC has substantial antibacterial and immunomodulatory properties.


Assuntos
Quitosana , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Bandagens , Quitosana/farmacologia , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/uso terapêutico , Glicosaminoglicanos , Interleucina-10 , NF-kappa B , Polieletrólitos , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa
2.
J Cell Physiol ; 237(1): 992-1012, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520565

RESUMO

Histone protein modifications control the inflammatory state of many immune cells. However, how dynamic alteration in histone methylation causes endothelial inflammation and apoptosis is not clearly understood. To examine this, we explored two contrasting histone methylations; an activating histone H3 lysine 4 trimethylation (H3K4me3) and a repressive histone H3 lysine 27 trimethylation (H3K27me3) in endothelial cells (EC) undergoing inflammation. Through computer-aided reconstruction and 3D printing of the human coronary artery, we developed a unique model where EC were exposed to a pattern of oscillatory/disturbed flow as similar to in vivo conditions. Upon induction of endothelial inflammation, we detected a significant rise in H3K4me3 caused by an increase in the expression of SET1/COMPASS family of H3K4 methyltransferases, including MLL1, MLL2, and SET1B. In contrast, EC undergoing inflammation exhibited truncated H3K27me3 level engendered by EZH2 cytosolic translocation through threonine 367 phosphorylation and an increase in the expression of histone demethylating enzyme JMJD3 and UTX. Additionally, many SET1/COMPASS family of proteins, including MLL1 (C), MLL2, and WDR5, were associated with either UTX or JMJD3 or both and such association was elevated in EC upon exposure to inflammatory stimuli. Dynamic enrichment of H3K4me3 and loss of H3K27me3 at Notch-associated gene promoters caused ADAM17 and Jagged-1 derepression and abrupt Notch activation. Conversely, either reducing H3K4me3 or increasing H3K27me3 in EC undergoing inflammation attenuated Notch activation, endothelial inflammation, and apoptosis. Together, these findings indicate that dynamic chromatin modifications may cause an inflammatory and apoptotic switch of EC and that epigenetic reprogramming can potentially improve outcomes in endothelial inflammation-associated cardiovascular diseases.


Assuntos
Histonas , Lisina , Proteína ADAM17/metabolismo , Células Endoteliais/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Lisina/metabolismo
3.
Microvasc Res ; 128: 103939, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31676309

RESUMO

A drug undergoes several in silico, in vitro, ex vivo and in vivo assays before entering into the clinical trials. In 2014, it was reported that only 32% of drugs are likely to make it to Phase-3 trials, and overall, only one in 10 drugs makes it to the market. Therefore, enhancing the precision of pre-clinical trial models could reduce the number of failed clinical trials and eventually time and financial burden in health sciences. In order to attempt the above, in the present study, we have shown that aortic ex-plants isolated from different stages of chick embryo and different regions of the aorta (pulmonary and systemic) have differential sprouting potential and response to angiogenesis modulatory drugs. Aorta isolated from HH37 staged chick embryo showed 16% (p < 0.001) and 11% (p < 0.001) increase in the number of tip cells at 72 h of culture compared to that of HH35 and HH29 respectively. The ascending order of the number of tip cells was found as central (Gen II), proximal (Gen I) and distal (Gen III) in a virtual zonal segmentation of endothelial sprouting. The HH37 staged aortas displayed differential responses to pro- and anti-angiogenic drugs like Vascular endothelial growth factor (VEGF), nitric oxide donor (spNO), and bevacizumab (avastin), thalidomide respectively. The human placenta tissue-culture however evinced endothelial sprouting only on day 12, with a gradual decrease in the number of tip cells until 21 days. In summary, this study provides an avant-garde angiogenic model emphasized on tip cells that would enhance the precision to test next-generation angiogenic drugs.


Assuntos
Indutores da Angiogênese/farmacologia , Inibidores da Angiogênese/farmacologia , Aorta Torácica/embriologia , Bioensaio , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Placenta/irrigação sanguínea , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Células Endoteliais/fisiologia , Feminino , Humanos , Gravidez , Reprodutibilidade dos Testes , Fatores de Tempo , Técnicas de Cultura de Tecidos
4.
RSC Adv ; 9(46): 26646-26667, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35528587

RESUMO

Cancer is one of the leading causes of global death and there is an urgent need for the development of cancer treatment; targeting VEGFR2 could be one of the promising therapies. In the present study, previously isolated marine fungal metabolite monacolin X, suppresses in vitro angiogenic characteristics such as proliferation, migration, adhesion, invasion and tube formation of HUVECs when stimulated by VEGF, at a non-toxic concentration. Monacolin X downregulated VEGFR2, PKCα and PKCη mRNA expression. Further, monacolin X inhibited in vivo angiogenesis in CAM assay, vascular sprouting in aortic ring, decreased ISV and SIV length and diameter in Tg (Kdr:EGFP)/ko1 zebrafish embryos. Monacolin X showed reduced protein expression of pVEGFR2, pAKT1, pMAPKAPK2, pFAK and pERK1 in breast cancer lines and in DMBA induced mammary carcinoma in SD rats showed tumor regression and anti-angiogenesis ability via decrease pVEGFR2 and pAKT1 protein expression. In silico studies also revealed monacolin X ability to bind to crucial amino acid Cys 919 in the active site of VEGFR2 suggesting it to be a potent VEGFR2 inhibitor.

5.
Naunyn Schmiedebergs Arch Pharmacol ; 391(10): 1093-1105, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29982937

RESUMO

Despite of medical disaster caused by thalidomide in 1960s, the drug came to clinical use again for the treatment of erythema nodosum leprosum (ENL) and multiple myeloma. Recently, a new generation of children affected by thalidomide intake by their mothers during pregnancy has been identified in Brazil. In the past few years, there is the great enhancement in our understanding of the molecular mechanisms and targets of thalidomide with the help of modern OMICS technologies. However, understanding of cardiac-specific anomalies in fetus due to thalidomide intake by the respective mother has not been explored fully. At organ level, thalidomide causes congenital heart diseases, limb deformities in addition to ocular, and neural and ear abnormalities. The period of morning sickness and cardiogenesis is synchronized in pregnant women. Therefore, thalidomide intake during the first trimester could affect cardiogenesis severely. Thalidomide intake in pregnant women either causes miscarriage or heart abnormalities such as patent ductus arteriosus, ventricular septal defect (VSD), atrial septal defect (ASD), and pulmonary stenosis in survivors. In the present study, we identified a novel morphological defect (lump) in the heart of thalidomide-treated chick embryos. We characterized the lump at morphological, histo-pathological, oxidative stress, electro-physiological, and gene expression level. To our knowledge, here, we report the very first electrophysiological characterization of embryonic heart affected by thalidomide treatment.


Assuntos
Coração/efeitos dos fármacos , Hematoma/induzido quimicamente , Miocárdio/patologia , Teratogênicos/toxicidade , Talidomida/toxicidade , Animais , Embrião de Galinha , Coração/embriologia , Coração/fisiologia , Hemoglobinas/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA