Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675685

RESUMO

Alantolactone is a eudesmane-type sesquiterpene lactone containing an α-methylene-γ-lactone moiety. Previous studies showed that alantolactone inhibits the nuclear factor κB (NF-κB) signaling pathway by targeting the inhibitor of NF-κB (IκB) kinase. However, in the present study, we demonstrated that alantolactone selectively down-regulated the expression of tumor necrosis factor (TNF) receptor 1 (TNF-R1) in human lung adenocarcinoma A549 cells. Alantolactone did not affect the expression of three adaptor proteins recruited to TNF-R1. The down-regulation of TNF-R1 expression by alantolactone was suppressed by an inhibitor of TNF-α-converting enzyme. Alantolactone increased the soluble forms of TNF-R1 that were released into the culture medium as an ectodomain. The structure-activity relationship of eight eudesmane derivatives revealed that an α-methylene-γ-lactone moiety was needed to promote TNF-R1 ectodomain shedding. In addition, parthenolide and costunolide, two sesquiterpene lactones with an α-methylene-γ-lactone moiety, increased the amount of soluble TNF-R1. Therefore, the present results demonstrate that sesquiterpene lactones with an α-methylene-γ-lactone moiety can down-regulate the expression of TNF-R1 by promoting its ectodomain shedding in A549 cells.


Assuntos
Regulação para Baixo , Lactonas , Receptores Tipo I de Fatores de Necrose Tumoral , Sesquiterpenos , Humanos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lactonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
2.
Biochem Biophys Res Commun ; 708: 149801, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38531219

RESUMO

Toll-like receptor (TLR) agonists or pro-inflammatory cytokines converge to activate the nuclear factor κB (NF-κB) signaling pathway, which provokes inflammatory responses. In the present study, we identified amiodarone hydrochloride as a selective inhibitor of the TLR3-mediated NF-κB signaling pathway by screening the RIKEN NPDepo Chemical Library. In human umbilical vein endothelial cells (HUVEC), amiodarone selectively inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) induced by polyinosinic-polycytidylic acid (Poly(I:C)), but not tumor necrosis factor-α, interleukin-1α, or lipopolysaccharide. In response to a Poly(I:C) stimulation, amiodarone at 20 µM reduced the up-regulation of mRNA expression encoding ICAM-1, vascular cell adhesion molecule-1, and E-selectin. The nuclear translocation of the NF-κB subunit RelA was inhibited by amiodarone at 15-20 µM in Poly(I:C)-stimulated HUVEC. Amiodarone diminished the fluorescent dots of LysoTracker® Red DND-99 scattered over the cytoplasm of HUVEC. Therefore, the present study revealed that amiodarone selectively inhibited the TLR3-mediated NF-κB signaling pathway by blocking the acidification of intracellular organelles.


Assuntos
Amiodarona , NF-kappa B , Humanos , NF-kappa B/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Receptor 3 Toll-Like/metabolismo , Células Endoteliais/metabolismo , Amiodarona/farmacologia , Amiodarona/metabolismo , Células Cultivadas , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular/metabolismo , Organelas/metabolismo , Concentração de Íons de Hidrogênio
3.
Eur J Pharmacol ; 969: 176458, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395373

RESUMO

Alantolactone is a eudesmane-type sesquiterpene lactone that exerts various biological effects, including anti-inflammatory activity. In the present study, screening using the RIKEN Natural Products Depository chemical library identified alantolactone derivatives that inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells stimulated with proinflammatory cytokines and Toll-like receptor ligands. In human lung adenocarcinoma A549 cells stimulated with tumor necrosis factor-α (TNF-α), six alantolactone derivatives inhibited ICAM-1 expression in a dose-dependent manner and at IC50 values of 13-21 µM, whereas that of alantolactone was 5 µM. Alantolactone possesses an α-methylene-γ-lactone moiety, whereas alantolactone derivatives do not. In the nuclear factor κB (NF-κB) signaling pathway, alantolactone prevented the TNF-α-induced phosphorylation and degradation of the inhibitor of NF-κB α (IκBα) protein, and its downstream signaling pathway. In contrast, alantolactone derivatives neither reduced TNF-α-induced IκBα degradation nor the nuclear translocation of the NF-κB subunit RelA, but inhibited the binding of RelA to the ICAM-1 promoter. The inhibitory activities of alantolactone and alantolactone derivatives were attenuated by glutathione. These results indicate that alantolactone derivatives inhibit the TNF-α-induced NF-κB pathway by a different mechanism from alantolactone.


Assuntos
Neoplasias Pulmonares , Sesquiterpenos de Eudesmano , Humanos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Inibidor de NF-kappaB alfa , Molécula 1 de Adesão Intercelular/metabolismo , Lactonas/farmacologia , Sesquiterpenos de Eudesmano/farmacologia , Células Endoteliais da Veia Umbilical Humana , Neoplasias Pulmonares/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37414211

RESUMO

Fatty acid-binding proteins (FABPs) are intracellular lipid-binding proteins that play roles in fatty acid transport and the regulation of gene expression. Dysregulated FABP expression and/or activity have been associated with cancer pathogenesis; in particular, epidermal-type FABP (FABP5) is upregulated in many types of cancer. However, the mechanisms regulating FABP5 expression and its involvement in cancer remain largely unknown. Here, we examined the regulation of FABP5 gene expression in non-metastatic and metastatic human colorectal cancer (CRC) cells. We found that FABP5 expression was upregulated in metastatic compared with non-metastatic CRC cells as well as in human CRC tissues compared with adjacent normal tissue. Analysis of the DNA methylation status of the FABP5 promoter showed that hypomethylation correlated with the malignant potential of the CRC cell lines. Moreover, FABP5 promoter hypomethylation also correlated with the expression pattern of splice variants of the DNA methyltransferase DNMT3B. ChIP assays and luciferase reporter assays demonstrated that the transcription factor nuclear factor-kappa B (NF-κB) was involved in regulating FABP5 expression. FABP5 expression could be upregulated in metastatic CRC cells by sequential promotion of DNA demethylation followed by activation of NF-κB. We also found that upregulated FABP5 in turn controlled NF-κB activity through IL-8 production. Collectively, these findings suggest the existence of a DNA methylation-dependent NF-κB /FABP5 positive feed-forward loop that may lead to constitutive activation of NF-κB signaling pathway and play a crucial role in CRC progression.


Assuntos
Neoplasias do Colo , NF-kappa B , Humanos , NF-kappa B/metabolismo , Metilação de DNA , Transdução de Sinais , Neoplasias do Colo/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo
5.
J Antibiot (Tokyo) ; 76(6): 324-334, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997727

RESUMO

Allantopyrone A is an α-pyrone metabolite that was originally isolated from the endophytic fungus Allantophomopsis lycopodina KS-97. We previously demonstrated that allantopyrone A exhibits anti-cancer, anti-inflammatory, and neuroprotective activities. In the present study, we showed that allantopyrone A up-regulated the protein expression of hypoxia-inducible factor (HIF)-1α in human fibrosarcoma HT-1080 cells. It also up-regulated the mRNA expression of BNIP3 and ENO1, but not other HIF target genes or HIF1A. Allantopyrone A did not inhibit the prolyl hydroxylation of HIF-1α, but enhanced the ubiquitination of cellular proteins. Consistent with this result, chymotrypsin-like and trypsin-like proteasome activities were reduced, but not completely inactivated by allantopyrone A. Allantopyrone A decreased the amount of proteasome catalytic subunits. Therefore, the present results showed that allantopyrone A interfered with the degradation of HIF-1α protein by reducing proteasome activity in human fibrosarcoma HT-1080 cells.


Assuntos
Fibrossarcoma , Complexo de Endopeptidases do Proteassoma , Humanos , Pironas/farmacologia , Fibrossarcoma/tratamento farmacológico , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia
6.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806134

RESUMO

Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), induce the expression of intracellular adhesion molecule-1 (ICAM-1) by activating the nuclear factor κB (NF-κB) signaling pathway. In the present study, we found that cucurbitacin B decreased the expression of ICAM-1 in human lung adenocarcinoma A549 cells stimulated with TNF-α or interleukin-1α. We further investigated the mechanisms by which cucurbitacin B down-regulates TNF-α-induced ICAM-1 expression. Cucurbitacin B inhibited the nuclear translocation of the NF-κB subunit RelA and the phosphorylation of IκBα in A549 cells stimulated with TNF-α. Cucurbitacin B selectively down-regulated the expression of TNF receptor 1 (TNF-R1) without affecting three adaptor proteins (i.e., TRADD, RIPK1, and TRAF2). The TNF-α-converting enzyme inhibitor suppressed the down-regulation of TNF-R1 expression by cucurbitacin B. Glutathione, N-acetyl-L-cysteine, and, to a lesser extent, L-cysteine attenuated the inhibitory effects of cucurbitacin B on the TNF-α-induced expression of ICAM-1, suggesting that an α,ß-unsaturated carbonyl moiety is essential for anti-inflammatory activity. The present results revealed that cucurbitacin B down-regulated the expression of TNF-R1 at the initial step in the TNF-α-dependent NF-κB signaling pathway.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais , Triterpenos , Fator de Necrose Tumoral alfa/metabolismo
7.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630550

RESUMO

Ursane-type pentacyclic triterpenoids exert various biological effects, including anticancer and anti-inflammatory activities. We previously reported that ursolic acid, corosolic acid, and asiatic acid interfered with the intracellular trafficking and glycosylation of intercellular adhesion molecule-1 (ICAM-1) in human lung adenocarcinoma A549 cells stimulated with the pro-inflammatory cytokine interleukin-1α. However, the structure-activity relationship of ursane-type pentacyclic triterpenoids remains unclear. In the present study, the biological activities of seven ursane-type pentacyclic triterpenoids (ß-boswellic acid, uvaol, madecassic acid, 3-O-acetyl-11-keto-ß-boswellic acid, ursolic acid, corosolic acid, and asiatic acid) were investigated. We revealed that the inhibitory activities of ursane-type pentacyclic triterpenoids on the cell surface expression and glycosylation of ICAM-1 and α-glucosidase activity were influenced by the number of hydroxy groups and/or the presence and position of a carboxyl group. We also showed that ß-boswellic acid interfered with ICAM-1 glycosylation in a different manner from other ursane-type pentacyclic triterpenoids.


Assuntos
Adenocarcinoma de Pulmão , Molécula 1 de Adesão Intercelular , Triterpenos , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Glicosilação , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Triterpenos/farmacologia
9.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884902

RESUMO

The T-box transcription factor Eomesodermin (Eomes) promotes the expression of interferon-γ (IFN-γ). We recently reported that the small molecule inhibitors, TPCA-1 and IKK-16, which target nuclear factor κB (NF-κB) activation, moderately reduced Eomes-dependent IFN-γ expression in mouse lymphoma BW5147 cells stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (IM). In the present study, we investigated the direct effects of NF-κB on IFN-γ expression in mouse lymphoma EL4 cells and primary effector T cells. Eomes strongly promoted IFN-γ expression and the binding of RelA and NFATc2 to the IFN-γ promoter when EL4 cells were stimulated with PMA and IM. Neither TPCA-1 nor IKK-16 reduced IFN-γ expression; however, they markedly decreased interleukin (IL)-2 expression in Eomes-transfected EL4 cells. Moreover, TPCA-1 markedly inhibited the binding of RelA, but not that of Eomes or NFATc2 to the IFN-γ promoter. In effector CD4+ and CD8+ T cells activated with anti-CD3 and anti-CD28 antibodies, IFN-γ expression induced by PMA and A23187 was not markedly decreased by TPCA-1 or IKK-16 under conditions where IL-2 expression was markedly reduced. Therefore, the present results revealed that NF-κB is dispensable for IFN-γ expression induced by PMA and calcium ionophores in EL4 cells expressing Eomes and primary effector T cells.


Assuntos
Ionóforos de Cálcio/farmacologia , Interferon gama/genética , NF-kappa B/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Amidas/farmacologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Interferon gama/metabolismo , Interleucina-2/metabolismo , Camundongos , Piperidinas/farmacologia , Cultura Primária de Células , Regiões Promotoras Genéticas/efeitos dos fármacos , Pirrolidinas/farmacologia , Proteínas com Domínio T/metabolismo , Tiofenos/farmacologia
11.
Eur J Pharmacol ; 890: 173651, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33049301

RESUMO

α-Conidendrin is a lignan isolated from Taxus wallichiana and other species. In the present study, we demonstrated that α-conidendrin inhibited the cell-surface expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor-α (TNF-α) at an IC50 value of 40-60 µM in human lung adenocarcinoma A549 cells. α-Conidendrin decreased ICAM-1 protein and mRNA expression levels at concentrations of 40-100 µM in TNF-α-stimulated A549 cells. The TNF-α-induced mRNA expression of vascular cell adhesion molecule-1, E-selectin, and cyclooxygenase-2 was also reduced by α-conidendrin. In the TNF-α-induced nuclear factor κB (NF-κB) signaling pathway, α-conidendrin did not influence the translocation of the NF-κB subunit RelA from the cytoplasm to the nucleus at concentrations up to 100 µM. A chromatin immunoprecipitation assay revealed that α-conidendrin at 100 µM reduced the binding of RelA to the ICAM-1 promoter in response to a stimulation with TNF-α. Collectively, these results indicated that α-conidendrin interfered with the DNA binding of RelA to the ICAM-1 promoter, thereby reducing ICAM-1 transcription.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Lignanas/farmacologia , Neoplasias Pulmonares/metabolismo , Tetra-Hidronaftalenos/farmacologia , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Cromanos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Selectina E/efeitos dos fármacos , Selectina E/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Regiões Promotoras Genéticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/toxicidade
12.
Immunol Lett ; 225: 33-43, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32554052

RESUMO

The T-box transcription factor Eomesodermin (Eomes) regulates the lineage-dependent expression of interferon γ (IFN-γ). We previously showed that Eomes promotes IFN-γ production and interacts with multiple conserved noncoding sequences (CNS) across the Ifng locus in mouse lymphoma BW5147 cells. In the present study, we investigated the transcriptional regulation of IFN-γ by the nuclear factor κB (NF-κB) subunit RelA and nuclear factor of activated T cells c2 (NFATc2, also known as NFAT1) in Eomes-transfected BW5147 cells. Eomes promoted the interaction of RelA and NFATc2 with the Ifng promoter and five CNS, including CNS-22 and CNS+30 upon stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin (IM). The dual NF-κB and STAT3 inhibitor TPCA-1 moderately reduced the PMA- and IM-induced IFN-γ transcription in Eomes-transfected BW5147 cells. TPCA-1 interfered with RelA binding to the Ifng promoter, CNS-22 and CNS+30. Moreover, TPCA-1 reduced the interaction of Eomes or NFATc2 with the Ifng promoter and CNS+30. The present results indicate that Eomes promotes the interaction of RelA and NFATc2 with the Ifng promoter and multiple CNS across the Ifng locus in BW5147 cells.


Assuntos
Amidas/uso terapêutico , Linfoma/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas com Domínio T/metabolismo , Tiofenos/uso terapêutico , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular Tumoral , Sequência Conservada/genética , Regulação Neoplásica da Expressão Gênica , Loci Gênicos/genética , Interferon gama/genética , Linfoma/tratamento farmacológico , Camundongos , Regiões Promotoras Genéticas/genética , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores
13.
Exp Cell Res ; 381(2): 223-234, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31102594

RESUMO

We previously reported that the Bcl-2 family member human Bcl-rambo, also known as BCL2L13, induces apoptosis in human embryonic kidney 293T cells. Mouse Bcl-rambo has recently been reported to mediate mitochondrial fragmentation and mitophagy. In the present study, we showed that the transfection of human Bcl-rambo and its microtubule-associated protein light chain 3-interacting region motif mutant (W276A/I279A) caused mitochondrial fragmentation and the perinuclear accumulation of fragmented mitochondria in human lung adenocarcinoma A549 cells. In comprehensive screening using the Drosophila model in which human Bcl-rambo was ectopically expressed in eye imaginal discs, voltage-dependent anion channels (VDAC), also known as mitochondrial porin, were found to manifest a genetic interaction with human Bcl-rambo. In addition to human adenine nucleotide translocase (ANT) 1 and ANT2, the human Bcl-rambo protein bound to human VDAC1, albeit to a lesser extent than ANT2. Moreover, human VDAC1 and human VDAC2 in particular promoted the activation of effector caspases only when they were co-expressed with human Bcl-rambo in 293T cells. Bcl-rambo induced the perinuclear accumulation of fragmented mitochondria by the knockdown of VDAC1, VDAC2, and VDAC3 in A549 cells. Thus, the present study revealed that human Bcl-rambo and VDAC cooperatively promote the activation of effector caspases in human cultured cells.


Assuntos
Caspases Efetoras/metabolismo , Drosophila/genética , Epistasia Genética/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Canais de Ânion Dependentes de Voltagem/genética , Células A549 , Animais , Animais Geneticamente Modificados , Células Cultivadas , Ativação Enzimática/genética , Células HEK293 , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/genética
14.
J Antibiot (Tokyo) ; 72(5): 271-281, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30796332

RESUMO

4-O-Methylascochlorin (MAC), a methylated derivative of ascochlorin, was previously shown to promote the accumulation of hypoxia-inducible factor (HIF)-1α in human breast adenocarcinoma MCF-7 cells. In the present study, we further investigated the effects of MAC on the expression and function of HIF-1α in human fibrosarcoma HT-1080 cells. MAC promoted the accumulation of the HIF-1α protein without affecting its constitutive mRNA expression and augmented the transcriptional activation of HIF target genes. Ascorbate, but not N-acetylcysteine, attenuated MAC-mediated HIF-1α accumulation. MAC-induced increases in HIF-1α transcriptional activity were also attenuated by ascorbate. MAC inhibited the hydroxylation of HIF-1α at the proline 564 residue, while it was reversed by ascorbate. MAC slightly decreased the intracellular concentration of ascorbate. The present results demonstrated that MAC promoted the accumulation of HIF-1α by preventing prolyl hydroxylation, and ascorbate attenuated the MAC-mediated inhibition of HIF-1α prolyl hydroxylation.


Assuntos
Ácido Ascórbico/farmacologia , Inibidores Enzimáticos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Processamento de Proteína Pós-Traducional , Terpenos/antagonistas & inibidores , Terpenos/farmacologia , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Humanos , Hidroxilação , Prolina/metabolismo
15.
Biol Pharm Bull ; 42(1): 26-33, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30606988

RESUMO

Tumor necrosis factor α (TNF-α), a pro-inflammatory cytokine, regulates inflammatory and immune responses by up-regulating gene expression in a manner that is dependent on the transcription factor nuclear factor κB (NF-κB). In the present study, we found that 4-hydroxypanduratin A and isopanduratin A, constituents of the rhizomes of Boesenbergia pandurata, inhibited the TNF-α-stimulated up-regulation of intercellular adhesion molecule-1 (ICAM-1) in human lung adenocarcinoma A549 cells. 4-Hydroxypanduratin A and isopanduratin A also reduced ICAM-1 mRNA expression and NF-κB-responsive luciferase activity in TNF-α-stimulated A549 cells. Moreover, 4-hydroxypanduratin A and isopanduratin A prevented the TNF-α-stimulated translocation of the NF-κB subunit p65 to the nucleus and the phosphorylation and proteasomal degradation of the inhibitor of the NF-κB α protein. The present results revealed that 4-hydroxypanduratin A and isopanduratin A inhibit TNF-α-stimulated gene expression and the NF-κB-dependent signaling pathway in A549 cells.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Chalconas/farmacologia , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/toxicidade
16.
Biol Pharm Bull ; 41(12): 1757-1768, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30504678

RESUMO

The pentacyclic triterpenoid ursolic acid was previously shown to inhibit the intracellular trafficking of intercellular adhesion molecule-1 (ICAM-1) from the endoplasmic reticulum (ER) to the Golgi apparatus. In the present study, we further investigated the biological activities of three pentacyclic triterpenoids closely related to ursolic acid on the interleukin 1α-induced expression and intracellular trafficking of ICAM-1. In human lung adenocarcinoma A549 cells, asiatic acid, corosolic acid, and maslinic acid interfered with the intracellular transport of ICAM-1 to the cell surface. Endoglycosidase H-sensitive glycans were linked to ICAM-1 in asiatic acid-, corosolic acid-, and maslinic acid-treated cells. Unlike corosolic acid, asiatic acid and maslinic acid increased the amount of the ICAM-1 protein. Moreover, asiatic acid increased the co-localization of ICAM-1 with calnexin (an ER marker), but not GM130 (a cis-Golgi marker). Asiatic acid, corosolic acid, and maslinic acid inhibited yeast α-glucosidase activity, but not Jack bean α-mannosidase activity. These results indicate that asiatic acid, corosolic acid, and maslinic acid interfere with the intracellular transport of ICAM-1 to the cell surface and cause the accumulation of ICAM-1 linked to endoglycosidase H-sensitive glycans.


Assuntos
Retículo Endoplasmático/metabolismo , Glicosilação/efeitos dos fármacos , Complexo de Golgi/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Triterpenos Pentacíclicos/farmacologia , Triterpenos/farmacologia , Células A549 , Citocinas/imunologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/imunologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/imunologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Microscopia Confocal , Polissacarídeos/metabolismo , Transporte Proteico
17.
Int Immunopharmacol ; 62: 313-325, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30053729

RESUMO

Kujigamberol is the norlabdane compound isolated from Kuji amber and has recently been shown to prevent Ca2+-signal transduction and exert anti-allergy effects in vitro and in vivo. However, the anti-inflammatory activities of kujigamberol remain unclear. In the present study, we investigated the biological activities of kujigamberol on cell adhesion molecules expressed on human umbilical vein endothelial cells (HUVEC) in response to pro-inflammatory cytokines. Kujigamberol decreased the molecular weight of intercellular adhesion molecule-1 (ICAM-1) by altering N-glycan modifications. In contrast to ICAM-1, kujigamberol reduced the interleukin-1α- or tumor necrosis factor α-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin at the mRNA and protein levels. Kujigamberol B, but not kujiol A, decreased the molecular weight of the ICAM-1 protein. Kujigamberol moderately inhibited yeast α-glucosidases, whereas it was only weakly inhibited by kujigamberol B and more weakly by kujiol A. Three compounds did not inhibit Jack bean α-mannosidases. The present results reveal new biological activities of kujigamberol, which interfere with the pro-inflammatory cytokine-induced expression of and N-glycan modifications to cell adhesion molecules in HUVEC.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/imunologia , Diterpenos/farmacologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão de Célula Vascular/genética , Células A549 , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Selectina E/genética , Expressão Gênica/efeitos dos fármacos , Glicosilação , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7
18.
Int J Mol Sci ; 18(12)2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29207489

RESUMO

Quinacrine has been used for therapeutic drugs in some clinical settings. In the present study, we demonstrated that quinacrine decreased the expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor (TNF)-α and interleukin-1 (IL-1) α in human lung adenocarcinoma A549 cells. Quinacrine inhibited ICAM-1 mRNA expression and nuclear factor κB (NF-κB)-responsive luciferase reporter activity following a treatment with TNF-α and IL-1α. In the NF-κB signaling pathway, quinacrine did not markedly affect the TNF-α-induced degradation of the inhibitor of NF-κB or the TNF-α-induced phosphorylation of the NF-κB subunit, p65, at Ser-536 and its subsequent translocation to the nucleus. In contrast, a chromatin immunoprecipitation assay showed that quinacrine prevented the binding of p65 to the ICAM-1 promoter following TNF-α stimulation. Moreover, TNF-α and the Fas ligand effectively reduced the viability of A549 cells in the presence of quinacrine only. Quinacrine down-regulated the constitutive and TNF-α-induced expression of c-FLIP and Mcl-1 in A549 cells. These results revealed that quinacrine inhibits ICAM-1 transcription by blocking the DNA binding of p65 and sensitizes A549 cells to TNF-α and the Fas ligand.


Assuntos
Adenocarcinoma/genética , Antineoplásicos/farmacologia , Molécula 1 de Adesão Intercelular/genética , Neoplasias Pulmonares/genética , Quinacrina/farmacologia , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Células A549 , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Proteína Ligante Fas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
19.
Biol Pharm Bull ; 40(10): 1669-1677, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966239

RESUMO

The transcription factor nuclear factor κB (NF-κB) regulates various biological processes, including inflammatory responses. We previously reported that eudesmane-type sesquiterpene lactones inhibited multiple steps in the canonical NF-κB signaling pathway induced by tumor necrosis factor-α and interleukin-1α. In contrast, the biological activities of eudesmane-type sesquiterpene lactones on the non-canonical NF-κB signaling pathway remain unclear. In the present study, we found that (11S)-2α-bromo-3-oxoeudesmano-12,6α-lactone, designated santonin-related compound 2 (SRC2), inhibited NF-κB luciferase reporter activity induced by lymphotoxin ß (LTß) in human lung carcinoma A549 cells. Although SRC2 did not prevent the processing of the NF-κB subunit p100 induced by LTß, it inhibited the nuclear translocation of RelB and p52 in response to the LTß stimulation. In contrast to (-)-dehydroxymethylepoxyquinomicin, SRC2 inhibited the LTß-induced nuclear translocation of the RelB (C144S) mutant in a manner similar to wild-type RelB. While eudesmane derivatives possessing an α-bromoketone moiety or α,ß-unsaturated carbonyl moieties inhibited LTß-induced NF-κB luciferase reporter activity, eudesmane derivatives possessing an α-bromoketone moiety exhibited stronger inhibitory activity on the LTß-induced nuclear translocation of RelB than those possessing a single α-methylene-γ-lactone moiety. The results of the present study revealed that SRC2 inhibits the nuclear translocation of RelB in the non-canonical NF-κB signaling pathway induced by LTß.


Assuntos
Lactonas/farmacologia , Linfotoxina-beta/farmacologia , NF-kappa B/metabolismo , Transporte Proteico/efeitos dos fármacos , Sesquiterpenos de Eudesmano/farmacologia , Células A549 , Núcleo Celular/metabolismo , Humanos
20.
J Antibiot (Tokyo) ; 70(9): 929-936, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28676715

RESUMO

Allantopyrone A is a fungal metabolite that uniquely possesses two α,ß-unsaturated carbonyl moieties. We recently reported that allantopyrone A inhibited the nuclear factor-κB (NF-κB) signaling pathway induced by tumor necrosis factor (TNF)-α in human lung carcinoma A549 cells. In the present study, the mechanism by which allantopyrone A inhibits the TNF-α-induced signaling pathway was investigated in more detail. Allantopyrone A blocked extensive modifications to receptor-interacting protein 1 (RIP1) in the TNF receptor 1 (TNF-R1) complex. Allantopyrone A augmented the high-MW bands of TNF-R1, TNF receptor-associated factor 2, RIP1, the NF-κB subunit RelA and inhibitor of NF-κB kinase ß in A549 cells, suggesting that it binds to and promotes the crosslinking of these proteins. The extracellular cysteine-rich domains of TNF-R1 were crosslinked by allantopyrone A more preferentially than its intracellular portion. The present results demonstrate that allantopyrone A interferes with multiple components of the TNF-R1 complex and blocks RIP1 modifications in the TNF-α-induced NF-κB signaling pathway.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Pironas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Células A549 , Cisteína/química , Cisteína/metabolismo , Genes Reporter/efeitos dos fármacos , Células HEK293 , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Peso Molecular , Inibidor de NF-kappaB alfa/antagonistas & inibidores , Inibidor de NF-kappaB alfa/química , Inibidor de NF-kappaB alfa/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Fator 2 Associado a Receptor de TNF/antagonistas & inibidores , Fator 2 Associado a Receptor de TNF/química , Fator 2 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA