Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(20): 29624-29637, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34676481

RESUMO

As olive leaves constitute the main by-product of the olive oil industry with important environmental and economic impact, there is an increasing demand for its valorization. In the present work, we report the development and application of immobilized enzyme batch bioreactors for the chemo-enzymatic treatment of an aqueous Olea europaea leaf extract rich in oleuropein to produce an extract enriched in hydroxytyrosol and other oleuropein hydrolysis products. To this end, a robust biocatalyst was developed through the immobilization of ß-glucosidase on chitosan-coated magnetic beads which exhibited high hydrolytic stability after 240 h of incubation at 37 °C. The biocatalyst was successfully used in both a rotating bed-reactor and a stir-tank reactor for the modification of the olive leaf extract leading to high conversion yields of oleuropein (exceeding 90%), while an up to 2.5 times enrichment in hydroxytyrosol was achieved. Over 20 phenolic compounds (from different classes of phytochemicals such as flavonoids, secoiridoids, and their derivatives) were identified, in the extract before and after its modification through various chromatographic and spectroscopic techniques. Finally, the biological activity of both extracts was evaluated. Compared to the non-modified extract, the modified one demonstrated 20% higher antioxidant activity, seven-fold higher antibacterial activity, and enhanced cytotoxicity against leiomyosarcoma cells.


Assuntos
Olea , Antioxidantes/química , Antioxidantes/farmacologia , Enzimas Imobilizadas , Iridoides/química , Olea/química , Álcool Feniletílico/análogos & derivados , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta
2.
Eur J Nutr ; 42(1): 55-60, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12594542

RESUMO

BACKGROUND: Main cereals such as rice, wheat, barley, and corn belong to the family Gramineae and have similar cell-wall composition. Since cereal cell walls are a good source of dietary fibre, meeting one-half of the daily requirement of 30 g of dietary fibre can be achieved by the regular consumption of cereals. Many studies have dealt with the isolation of feruloylated oligosaccharides from Gramineae by treatment with polysaccharide hydrolysing enzymes. AIM OF THIS STUDY: Therefore, the purpose of this study was to investigate the production of feruloylated oligosaccharides from insoluble wheat flour arabinoxylan (WFAX) by treatment with a Thermoascus aurantiacus family 10 endoxylanase (XYLI) and the evaluation of their antioxidant activity. METHODS: The main feruloylated oligosaccharide was purified by anion-exchange and size-exclusion chromatography (SEC). Alkaline saponification and acid hydrolysis were used for product identification. Evaluation of antioxidant activity was performed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) reduction assay and the inhibition of copper-mediated oxidation of low density lipoprotein (LDL). RESULTS: The optimal conditions for WFAX hydrolysis using the XYLI have been determined to be 100 U g(-1) of WFAX for 30 min at 50 degrees C. Saponification of the oligosaccharide released FA and oligosaccharide. The released oligosaccharide consisted of arabinose and xylose in a molar ratio of 1:3 and these results support the identity of the feruloylated oligosaccharide as feruloyl arabinoxylotrisaccharide (FAX(3)). FAX(3) showed profound antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) reduction assay exhibiting an antiradical efficiency of 0.035 (x 10(-3)) and inhibited the copper-mediated oxidation of human low density lipoprotein (LDL) in a dose-dependent manner with almost complete inhibition at 32 microM. CONCLUSION: A feruloylated oligosaccharide (FAX3) was isolated from WFAX after enzymatic treatment with XYLI. We verified antioxidant activity of FAX(3) which may be important in preventing or reducing the progression of atherosclerosis by inhibiting the peroxidation of lipoproteins.


Assuntos
Antioxidantes/metabolismo , Oligossacarídeos/metabolismo , Triticum/química , Xilanos/metabolismo , Xilosidases/metabolismo , Cromatografia em Gel , Cromatografia por Troca Iônica , Ácidos Cumáricos/metabolismo , Endo-1,4-beta-Xilanases , Sequestradores de Radicais Livres , Hidrólise , Peroxidação de Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA