Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 143(5): 699-710.e10, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528128

RESUMO

Systemic sclerosis is a fibrotic disease that initiates in the skin and progresses to internal organs, leading to a poor prognosis. Unraveling the etiology of a chronic, multifactorial disease such as systemic sclerosis has been aided by various animal models that recapitulate certain aspects of the human pathology. We found that the transcription factor SNAI1 is overexpressed in the epidermis of patients with systemic sclerosis, and a transgenic mouse recapitulating this expression pattern is sufficient to induce many clinical features of the human disease. Using this mouse model as a discovery platform, we have uncovered a critical role for the matricellular protein Mindin (SPON2) in fibrogenesis. Mindin is produced by SNAI1 transgenic skin keratinocytes and aids fibrogenesis by inducing early inflammatory cytokine production and collagen secretion in resident dermal fibroblasts. Given the dispensability of Mindin in normal tissue physiology, targeting this protein holds promise as an effective therapy for fibrosis.


Assuntos
Fibroblastos , Escleroderma Sistêmico , Camundongos , Animais , Humanos , Fibroblastos/metabolismo , Escleroderma Sistêmico/patologia , Pele/patologia , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Camundongos Transgênicos , Modelos Animais de Doenças , Proteínas de Neoplasias/metabolismo
2.
Cell Rep ; 40(12): 111390, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130502

RESUMO

Preservation of a small population of cancer stem cells (CSCs) within a heterogeneous carcinoma serves as a paradigm to understand how select cells in a tissue maintain their undifferentiated status. In both embryogenesis and cancer, Snail has been correlated with stemness, but the molecular underpinning of this phenomenon remains largely ill-defined. In models of cutaneous squamous cell carcinoma (cSCC), we discovered a non-epithelial-mesenchymal transition function for the transcription factor Snail in maintaining the stemness of epidermal keratinocytes. Snail-expressing cells secrete the matricellular protein Mindin, which functions in an autocrine fashion to activate a Src-STAT3 pathway to reinforce their stem/progenitor phenotype. This pathway is activated by the engagement of Mindin with the leukocyte-specific integrin, CD11b (ITGAM), which is also unexpectedly expressed by epidermal keratinocytes. Interestingly, disruption of this signaling module in human cSCC attenuates tumorigenesis, suggesting that targeting Mindin would be a promising therapeutic approach to hinder cancer recurrence.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular , Humanos , Integrinas/metabolismo , Proteínas de Neoplasias , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Cutâneas/patologia , Fatores de Transcrição da Família Snail/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA