Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 6(5): e341, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28530706

RESUMO

The double-edged role of p21 to command survival and apoptosis is emerging. The current investigation highlights ER stress-mediated JNK activation that plausibly triggers cell death by attenuating endogenous p21 level. Here, we demonstrated that ER stress activator 3-AWA diminishes the p21 levels in cancer cells by averting the senescent phenotype to commence G2/M arrest. In essence, the deceleration in p21 level occurs through ER stress/JNK/Caspase-3 axis via activation/induction of proapoptotic Par-4 and inhibition of AKT. The molecular dynamics studies identified important interactions, which may be responsible for the AKT inhibition and efficacy of 3-AWA towards AKT binding pocket. Interestingly, the p21 deceleration was rescued by incubating the cells with 3-AWA in the presence of an ER stress inhibitor, Salubrinal. Furthermore, we demonstrated that p21 expression decreases solitarily in Par-4+/+ MEFs; albeit, ER stress-induced JNK activation was observed in both Par-4+/+ and Par-4-/- MEFs. Par-4 knockdown or overexpression studies established that ectopic Par-4 along with ER stress are not sufficient to downregulate p21 in PC-3 cells but are adequate for DU-145 cells and that the ER stress inflicted activation of JNK, inhibition of AKT and Par-4 induction are all crucial to p21 downmodulation by 3-AWA. By using isogenic cell lines, such as HCT-116 p53+/+ and HCT-116 p53-/-, we found that deceleration in p21 expression due to ER stress is p53 independent. Moreover, in orthotopic carcinogen-induced rat colorectal carcinoma model, we found that 3-AWA inhibits colorectal tumor growth and formation of colorectal polyps at a tolerable dose, similar to the first-line drug for colorectal cancer-5-fluorouracil.

2.
Curr Mol Med ; 16(8): 690-701, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27573195

RESUMO

The incitement of unfolded protein response (UPR) during endoplasmic reticulum (ER) stress by diverse intracellular (hypoxia, nutrient deprivation, etc.) or extracellular (environmental or drug induced) stimuli is considered a major threat for perturbing cellular homeostasis leading to the aggregation of unfolded proteins inside the cell. The catastrophic UPR events emerge as a prime cellular adaptation by remodeling cancer cell signaling and restoring ER homeostasis in favor of tumor growth. The transient ER stress protects cancer cells from undergoing apoptosis, whereas the prolonged stress response further activates many cell death pathways. The present review summarizes the UPR mediated triggering of transcriptional and translational reprogramming, which will provide novel therapeutic strategies towards pro-death mechanisms rather than a cellular adaptation in tumorigenesis. Nonetheless, the current topic also points out the reprogramming of emerging molecular switching events by complex UPR-mediated signaling to trigger apoptosis. The novel agents from various natural, semi-synthetic and synthetic sources that target ER stress signaling pathway to modulate selectively the UPR phenomena with preclinical efficacy are outlined. Since major emphasis on ER stress-induced transcriptional and translational reprogramming remains to be explored, we believe that the current subject will instigate more attention from the biomedical researchers in this certain research direction.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias/metabolismo , Resposta a Proteínas não Dobradas , Adaptação Fisiológica , Animais , Apoptose , Biomarcadores , Transformação Celular Neoplásica/metabolismo , Descoberta de Drogas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
3.
Cell Death Differ ; 22(7): 1203-18, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25721046

RESUMO

Tumor suppressor protein p53 is a master transcription regulator, indispensable for controlling several cellular pathways. Earlier work in our laboratory led to the identification of dual internal ribosome entry site (IRES) structure of p53 mRNA that regulates translation of full-length p53 and Δ40p53. IRES-mediated translation of both isoforms is enhanced under different stress conditions that induce DNA damage, ionizing radiation and endoplasmic reticulum stress, oncogene-induced senescence and cancer. In this study, we addressed nutrient-mediated translational regulation of p53 mRNA using glucose depletion. In cell lines, this nutrient-depletion stress relatively induced p53 IRES activities from bicistronic reporter constructs with concomitant increase in levels of p53 isoforms. Surprisingly, we found scaffold/matrix attachment region-binding protein 1 (SMAR1), a predominantly nuclear protein is abundant in the cytoplasm under glucose deprivation. Importantly under these conditions polypyrimidine-tract-binding protein, an established p53 ITAF did not show nuclear-cytoplasmic relocalization highlighting the novelty of SMAR1-mediated control in stress. In vivo studies in mice revealed starvation-induced increase in SMAR1, p53 and Δ40p53 levels that was reversible on dietary replenishment. SMAR1 associated with p53 IRES sequences ex vivo, with an increase in interaction on glucose starvation. RNAi-mediated-transient SMAR1 knockdown decreased p53 IRES activities in normal conditions and under glucose deprivation, this being reflected in changes in mRNAs in the p53 and Δ40p53 target genes involved in cell-cycle arrest, metabolism and apoptosis such as p21, TIGAR and Bax. This study provides a new physiological insight into the regulation of this critical tumor suppressor in nutrient starvation, also suggesting important functions of the p53 isoforms in these conditions as evident from the downstream transcriptional target activation.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica , Glucose/fisiologia , Sítios Internos de Entrada Ribossomal , Proteínas Nucleares/fisiologia , Biossíntese de Proteínas , Proteína Supressora de Tumor p53/genética , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Feminino , Camundongos , Isoformas de Proteínas/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA