Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 130(9): 97006, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36129437

RESUMO

BACKGROUND: The first evidence of micro- and nanoplastic (MNP) exposure in the human placenta is emerging. However, the toxicokinetics and toxicity of MNPs in the placenta, specifically environmentally relevant particles, remain unclear. OBJECTIVES: We examined the transport, uptake, and toxicity of pristine and experimentally weathered MNPs in nonsyncytialized and syncytialized BeWo b30 choriocarcinoma cells. METHODS: We performed untargeted chemical characterization of pristine and weathered MNPs using liquid chromatography high-resolution mass spectrometry to evaluate compositional differences following particle weathering. We investigated cellular internalization of pristine and weathered polystyrene (PS; 0.05-10µm) and high-density polyethylene (HDPE; 0-80µm) particles using high-resolution confocal imaging and three-dimensional rendering. We investigated the influence of particle coating with human plasma on the cellular transport of PS particles using a transwell setup and examined the influence of acute MNP exposure on cell viability, damage to the plasma membrane, and expression of genes involved in steroidogenesis. RESULTS: Chemical characterization of MNPs showed a significantly higher number of unique features in pristine particles in comparison with weathered particles. Size-dependent placental uptake of pristine and weathered MNPs was observed in both placental cell types after 24 h exposure. Cellular transport was limited and size-dependent and was not influenced by particle coating with human plasma. None of the MNPs affected cell viability. Damage to the plasma membrane was observed only for 0.05µm PS particles in the nonsyncytialized cells at the highest concentration tested (100µg/mL). Modest down-regulation of hsd17b1 was observed in syncytialized cells exposed to pristine MNPs. DISCUSSION: Our results suggest that pristine and weathered MNPs are internalized and translocated in placental cells in vitro. Effects on gene expression observed upon pristine PS and HDPE particle exposure warrant further examination. More in-depth investigations are needed to better understand the potential health risks of MNP and chemicals associated with them under environmentally relevant exposure scenarios. https://doi.org/10.1289/EHP10873.


Assuntos
Microplásticos , Poliestirenos , Sobrevivência Celular , Feminino , Humanos , Placenta/metabolismo , Polietileno/metabolismo , Polietileno/farmacologia , Gravidez
2.
Nat Mater ; 19(3): 355-365, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31819210

RESUMO

Microtubules are polymers of tubulin dimers, and conformational transitions in the microtubule lattice drive microtubule dynamic instability and affect various aspects of microtubule function. The exact nature of these transitions and their modulation by anticancer drugs such as Taxol and epothilone, which can stabilize microtubules but also perturb their growth, are poorly understood. Here, we directly visualize the action of fluorescent Taxol and epothilone derivatives and show that microtubules can transition to a state that triggers cooperative drug binding to form regions with altered lattice conformation. Such regions emerge at growing microtubule ends that are in a pre-catastrophe state, and inhibit microtubule growth and shortening. Electron microscopy and in vitro dynamics data indicate that taxane accumulation zones represent incomplete tubes that can persist, incorporate tubulin dimers and repeatedly induce microtubule rescues. Thus, taxanes modulate the material properties of microtubules by converting destabilized growing microtubule ends into regions resistant to depolymerization.


Assuntos
Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Taxoides/farmacologia , Células HeLa , Humanos , Cinética , Tubulina (Proteína)/metabolismo
4.
Neuron ; 104(2): 305-321.e8, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31474508

RESUMO

The axon initial segment (AIS) is a unique neuronal compartment that plays a crucial role in the generation of action potential and neuronal polarity. The assembly of the AIS requires membrane, scaffolding, and cytoskeletal proteins, including Ankyrin-G and TRIM46. How these components cooperate in AIS formation is currently poorly understood. Here, we show that Ankyrin-G acts as a scaffold interacting with End-Binding (EB) proteins and membrane proteins such as Neurofascin-186 to recruit TRIM46-positive microtubules to the plasma membrane. Using in vitro reconstitution and cellular assays, we demonstrate that TRIM46 forms parallel microtubule bundles and stabilizes them by acting as a rescue factor. TRIM46-labeled microtubules drive retrograde transport of Neurofascin-186 to the proximal axon, where Ankyrin-G prevents its endocytosis, resulting in stable accumulation of Neurofascin-186 at the AIS. Neurofascin-186 enrichment in turn reinforces membrane anchoring of Ankyrin-G and subsequent recruitment of TRIM46-decorated microtubules. Our study reveals feedback-based mechanisms driving AIS assembly.


Assuntos
Anquirinas/metabolismo , Segmento Inicial do Axônio/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Animais , Segmento Inicial do Axônio/ultraestrutura , Transporte Axonal , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Citoesqueleto , Endocitose , Retroalimentação Fisiológica , Células HEK293 , Hipocampo/citologia , Humanos , Microtúbulos/ultraestrutura , Neurônios/ultraestrutura , Ratos , Proteínas com Motivo Tripartido/metabolismo
5.
Mol Imaging Biol ; 21(6): 1079-1088, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30859470

RESUMO

PURPOSE: Recent studies have shown rapid accumulation of nanobodies (NBs) in tumors and fast clearance of the unbound fraction, making NBs exceptional tracers for cancer imaging. In this study, we investigate the combination of in vitro imaging of tumor spheroids, in vivo dual-isotope single-photon emission computed tomography (SPECT), and ex vivo autoradiographic analysis of tumors to efficiently, and with few mice, assess the tumor uptake and distribution of different NBs. PROCEDURES: The irrelevant NB R2 (16 kDa) and the EGFR-targeted NBs 7D12 (16 kDa) and 7D12-R2 (32 kDa) were investigated. Confocal microscopy was used to study the penetration of the NBs into A431 tumor spheroids over time, using the anti-EGFR monoclonal antibody (mAb) cetuximab (150 kDa) as a reference. Dual-isotope [111In]DOTA-NB/[177Lu]DOTA-NB SPECT was used for longitudinal imaging of multiple tracers in the same animal bearing A431 tumor xenografts. Tumor sections were analyzed using autoradiography. RESULTS: No binding of the irrelevant NB was observed in spheroids, whereas for the specific tracers an increase in the spheroid's covered area was observed over time. The NB 7D12 saturated the spheroid earlier than the larger, 7D12-R2. Even slower penetration was observed for the large mAb. In vivo, the tumor uptake of 7D12 was 19-fold higher than R2 after co-injection in the same animal, and 2.5-fold higher than 7D12-R2 when co-injected. 7D12-R2 was mainly localized at the rim of tumors, while 7D12 was found to be more evenly distributed. CONCLUSIONS: This study demonstrates that the combination of imaging of tumor spheroids, dual-isotope SPECT, and autoradiography of tumors is effective in comparing tumor uptake and distribution of different NBs. Results were in agreement with published data, highlighting the value of monomeric NBs for tumor imaging, and re-enforcing the value of these techniques to accurately assess the most optimal format for tumor imaging. This combination of techniques requires a lower number of animals to obtain significant data and can accelerate the design of novel tracers.


Assuntos
Autorradiografia , Neoplasias/diagnóstico por imagem , Radioisótopos/metabolismo , Anticorpos de Domínio Único/metabolismo , Esferoides Celulares/patologia , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Carbocianinas/química , Linhagem Celular Tumoral , Feminino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/patologia , Processamento de Sinais Assistido por Computador , Esferoides Celulares/metabolismo , Distribuição Tecidual
6.
Nat Commun ; 8: 14772, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322225

RESUMO

The cytoplasm is a highly complex and heterogeneous medium that is structured by the cytoskeleton. How local transport depends on the heterogeneous organization and dynamics of F-actin and microtubules is poorly understood. Here we use a novel delivery and functionalization strategy to utilize quantum dots (QDs) as probes for active and passive intracellular transport. Rapid imaging of non-functionalized QDs reveals two populations with a 100-fold difference in diffusion constant, with the faster fraction increasing upon actin depolymerization. When nanobody-functionalized QDs are targeted to different kinesin motor proteins, their trajectories do not display strong actin-induced transverse displacements, as suggested previously. Only kinesin-1 displays subtle directional fluctuations, because the subset of microtubules used by this motor undergoes prominent undulations. Using actin-targeting agents reveals that F-actin suppresses most microtubule shape remodelling, rather than promoting it. These results demonstrate how the spatial heterogeneity of the cytoskeleton imposes large variations in non-equilibrium intracellular dynamics.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoplasma/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Animais , Transporte Biológico , Transporte Biológico Ativo , Células COS , Chlorocebus aethiops , Citoesqueleto/metabolismo , Pontos Quânticos
7.
Dev Cell ; 39(6): 708-723, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27939686

RESUMO

Microtubules regulate signaling, trafficking, and cell mechanics, but the respective contribution of these functions to cell morphogenesis and migration in 3D matrices is unclear. Here, we report that the microtubule plus-end tracking protein (+TIP) SLAIN2, which suppresses catastrophes, is not required for 2D cell migration but is essential for mesenchymal cell invasion in 3D culture and in a mouse cancer model. We show that SLAIN2 inactivation does not affect Rho GTPase activity, trafficking, and focal adhesion formation. However, SLAIN2-dependent catastrophe inhibition determines microtubule resistance to compression and pseudopod elongation. Another +TIP, CLASP1, is also needed to form invasive pseudopods because it prevents catastrophes specifically at their tips. When microtubule growth persistence is reduced, inhibition of depolymerization is sufficient for pseudopod maintenance but not remodeling. We propose that catastrophe inhibition by SLAIN2 and CLASP1 supports mesenchymal cell shape in soft 3D matrices by enabling microtubules to perform a load-bearing function.


Assuntos
Mesoderma/metabolismo , Mesoderma/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colágeno/metabolismo , Exocitose , Feminino , Adesões Focais/metabolismo , Células HEK293 , Humanos , Interfase , Camundongos , Modelos Biológicos , Invasividade Neoplásica , Polimerização , Pseudópodes/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
8.
Cell ; 167(5): 1241-1251.e11, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27839865

RESUMO

The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/isolamento & purificação , Humanos , Membranas Intracelulares/química , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Termodinâmica , Vesículas Transportadoras/química
9.
Curr Biol ; 26(13): 1713-1721, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27321995

RESUMO

Microtubules are dynamic polymers built of tubulin dimers that attach in a head-to-tail fashion to form protofilaments, which further associate laterally to form a tube. Asynchronous elongation of individual protofilaments can potentially lead to an altered microtubule-end structure that promotes sudden depolymerization, termed catastrophe [1-4]. However, how the dynamics of individual protofilaments relates to overall growth persistence has remained unclear. Here, we used the microtubule targeting anti-cancer drug Eribulin [5-7] to explore the consequences of stalled protofilament elongation on microtubule growth. Using X-ray crystallography, we first revealed that Eribulin binds to a site on ß-tubulin that is required for protofilament plus-end elongation. Based on the structural information, we engineered a fluorescent Eribulin molecule. We demonstrate that single Eribulin molecules specifically interact with microtubule plus ends and are sufficient to either trigger a catastrophe or induce slow and erratic microtubule growth in the presence of EB3. Interestingly, we found that Eribulin increases the frequency of EB3 comet "splitting," transient events where a slow and erratically progressing comet is followed by a faster comet. This observation possibly reflects the "healing" of a microtubule lattice. Because EB3 comet splitting was also observed in control microtubules in the absence of any drugs, we propose that Eribulin amplifies a natural pathway toward catastrophe by promoting the arrest of protofilament elongation.


Assuntos
Antimitóticos/farmacologia , Furanos/farmacologia , Cetonas/farmacologia , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Bovinos , Cristalografia por Raios X , Microtúbulos/efeitos dos fármacos
10.
Dev Cell ; 37(4): 362-376, 2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27219064

RESUMO

Centrioles are fundamental and evolutionarily conserved microtubule-based organelles whose assembly is characterized by microtubule growth rates that are orders of magnitude slower than those of cytoplasmic microtubules. Several centriolar proteins can interact with tubulin or microtubules, but how they ensure the exceptionally slow growth of centriolar microtubules has remained mysterious. Here, we bring together crystallographic, biophysical, and reconstitution assays to demonstrate that the human centriolar protein CPAP (SAS-4 in worms and flies) binds and "caps" microtubule plus ends by associating with a site of ß-tubulin engaged in longitudinal tubulin-tubulin interactions. Strikingly, we uncover that CPAP activity dampens microtubule growth and stabilizes microtubules by inhibiting catastrophes and promoting rescues. We further establish that the capping function of CPAP is important to limit growth of centriolar microtubules in cells. Our results suggest that CPAP acts as a molecular lid that ensures slow assembly of centriolar microtubules and, thereby, contributes to organelle length control.


Assuntos
Centríolos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Centríolos/ultraestrutura , Cristalografia por Raios X , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/ultraestrutura , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
11.
Methods Cell Biol ; 131: 127-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794511

RESUMO

The formation and maintenance of highly polarized neurons critically depends on the proper organization of the microtubule (MT) cytoskeleton. In axons, MTs are uniformly oriented with their plus-end pointing outward whereas in mature dendrites MTs have mixed orientations. MT organization and dynamics can be regulated by MT-associated proteins (MAPs). Plus-end tracking proteins are specialized MAPs that decorate plus-ends of growing MTs and regulate neuronal polarity, neurite extension, and dendritic spine morphology. Conventional fluorescence microscopy enables observation of specific cellular components through molecule-specific labeling but provides limited resolution (∼250 nm). Therefore, electron microscopy has until now provided most of our knowledge about the precise MT organization in neurons. In the past decade, super-resolution fluorescence microscopy techniques have emerged that circumvent the diffraction limit of light and enable high-resolution reconstruction of the MT network combined with selective protein labeling. However, preserving MT ultrastructure, MAP binding, high labeling density, and antibody specificity after fixation protocols is still quite challenging. In this chapter, we provide an optimized protocol for two-color direct stochastic optical reconstruction microscopy imaging of neuronal MTs together with their growing plus-ends to probe MT architecture and polarity.


Assuntos
Axônios/metabolismo , Citoesqueleto/metabolismo , Hipocampo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Células Cultivadas , Células HeLa , Hipocampo/citologia , Humanos , Lentivirus/genética , Microscopia de Fluorescência/métodos , Ratos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Coloração e Rotulagem , Transfecção
12.
Dev Cell ; 28(3): 295-309, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24486153

RESUMO

Microtubules are cytoskeletal polymers with two structurally and functionally distinct ends, the plus- and the minus-end. Here, we focus on the mechanisms underlying the regulation of microtubule minus-ends by the CAMSAP/Nezha/Patronin protein family. We show that CAMSAP2 is required for the proper organization and stabilization of interphase microtubules and directional cell migration. By combining live-cell imaging and in vitro reconstitution of microtubule assembly from purified components with laser microsurgery, we demonstrate that CAMSAPs regulate microtubule minus-end growth and are specifically deposited on the lattice formed by microtubule minus-end polymerization. This process leads to the formation of CAMSAP-decorated microtubule stretches, which are stabilized from both ends and serve as sites of noncentrosomal microtubule outgrowth. The length of the stretches is regulated by the microtubule-severing protein katanin, which interacts with CAMSAPs. Our data thus indicate that microtubule minus-end assembly drives the stabilization of noncentrosomal microtubules and that katanin regulates this process.


Assuntos
Centrossomo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Katanina , Camundongos
13.
Dev Cell ; 27(2): 145-160, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24120883

RESUMO

Mechanisms controlling microtubule dynamics at the cell cortex play a crucial role in cell morphogenesis and neuronal development. Here, we identified kinesin-4 KIF21A as an inhibitor of microtubule growth at the cell cortex. In vitro, KIF21A suppresses microtubule growth and inhibits catastrophes. In cells, KIF21A restricts microtubule growth and participates in organizing microtubule arrays at the cell edge. KIF21A is recruited to the cortex by KANK1, which coclusters with liprin-α1/ß1 and the components of the LL5ß-containing cortical microtubule attachment complexes. Mutations in KIF21A have been linked to congenital fibrosis of the extraocular muscles type 1 (CFEOM1), a dominant disorder associated with neurodevelopmental defects. CFEOM1-associated mutations relieve autoinhibition of the KIF21A motor, and this results in enhanced KIF21A accumulation in axonal growth cones, aberrant axon morphology, and reduced responsiveness to inhibitory cues. Our study provides mechanistic insight into cortical microtubule regulation and suggests that altered microtubule dynamics contribute to CFEOM1 pathogenesis.


Assuntos
Oftalmopatias Hereditárias/metabolismo , Fibrose/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Transtornos da Motilidade Ocular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células COS , Proteínas de Transporte/metabolismo , Linhagem Celular , Chlorocebus aethiops , Proteínas do Citoesqueleto , Oftalmopatias Hereditárias/genética , Inibidores do Crescimento , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Morfogênese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Oftalmoplegia , Interferência de RNA , RNA Interferente Pequeno , Proteínas Supressoras de Tumor/metabolismo
14.
Proc Natl Acad Sci U S A ; 110(22): 8900-5, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23674690

RESUMO

Microtubule-targeting agents (MTAs) are widely used for treatment of cancer and other diseases, and a detailed understanding of the mechanism of their action is important for the development of improved microtubule-directed therapies. Although there is a large body of data on the interactions of different MTAs with purified tubulin and microtubules, much less is known about how the effects of MTAs are modulated by microtubule-associated proteins. Among the regulatory factors with a potential to have a strong impact on MTA activity are the microtubule plus end-tracking proteins, which control multiple aspects of microtubule dynamic instability. Here, we reconstituted microtubule dynamics in vitro to investigate the influence of end-binding proteins (EBs), the core components of the microtubule plus end-tracking protein machinery, on the effects that MTAs exert on microtubule plus-end growth. We found that EBs promote microtubule catastrophe induction in the presence of all MTAs tested. Analysis of microtubule growth times supported the view that catastrophes are microtubule age dependent. This analysis indicated that MTAs affect microtubule aging in multiple ways: destabilizing MTAs, such as colchicine and vinblastine, accelerate aging in an EB-dependent manner, whereas stabilizing MTAs, such as paclitaxel and peloruside A, induce not only catastrophes but also rescues and can reverse the aging process.


Assuntos
Senescência Celular/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Modelos Biológicos , Moduladores de Tubulina/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes , Colchicina , Depsipeptídeos , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Lactonas , Microscopia de Fluorescência , Paclitaxel , Podofilotoxina , Estatísticas não Paramétricas , Estilbenos , Vimblastina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA