Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 579(7798): 229-232, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32161387

RESUMO

Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids1-10. This conclusion is based on theory3-8 and supported by experiments1,9,10 that could not detect gas permeation through micrometre-size membranes within a detection limit of 105 to 106 atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We are capable of discerning (but did not observe) permeation of just a few helium atoms per hour, and this detection limit is also valid for all other gases tested (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. This puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport11,12. Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications.

2.
Nat Commun ; 6: 8190, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26373688

RESUMO

Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 10(3) Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm(-2) acts as a pulsed effective magnetic field of 0.01 Tesla.

3.
Sci Rep ; 4: 5585, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24998330

RESUMO

We present theoretical results on the high-temperature phase stability and phonon spectra of paramagnetic bcc iron which explicitly take into account many-body effects. Several peculiarities, including a pronounced softening of the [110] transverse (T1) mode and a dynamical instability of the bcc lattice in harmonic approximation are identified. We relate these features to the α-to-γ and γ-to-δ phase transformations in iron. The high-temperature bcc phase is found to be highly anharmonic and appears to be stabilized by the lattice entropy.

4.
Int J Stroke ; 9(4): 394-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24898282

RESUMO

BACKGROUND AND PURPOSE: The study aims to compare lipid profiles among ischemic stroke patients in a predominantly Caribbean-Hispanic population in Miami and a Mestizo Hispanic population in Mexico City. METHODS: We analyzed ischemic stroke Hispanic patients with complete baseline fasting lipid profile enrolled contemporaneously in the prospective registries of two tertiary care teaching hospitals in Mexico City and Miami. Demographic characteristics, risk factors, medications, ischemic stroke subtype, and first fasting lipid profile were compared. Vascular risk factor definitions were standardized. Multiple linear regression analysis was performed to compare lipid fractions. RESULTS: A total of 324 patients from Mexico and 236 from Miami were analyzed. Mexicans were significantly younger (58 · 1 vs. 67 · 4 years), had a lower frequency of hypertension (53 · 4% vs. 79 · 7%), and lower body mass index (27 vs. 28 · 5). There was a trend toward greater prevalence of diabetes in Mexicans (31 · 5 vs. 24 · 6%, P = 0 · 07). Statin use at the time of ischemic stroke was more common in Miami Hispanics (18 · 6 vs. 9 · 4%). Mexicans had lower total cholesterol levels (169 · 9 ± 46 · 1 vs. 179 · 9 ± 48 · 4 mg/dl), lower low-density lipoprotein (92 · 3 ± 37 · 1 vs. 108 · 2 ± 40 · 8 mg/dl), and higher triglyceride levels (166 · 9 ± 123 · 9 vs. 149 · 2 ± 115 · 2 mg/dl). These differences remained significant after adjusting for age, gender, hypertension, diabetes, body mass index, smoking, ischemic stroke subtype, and statin use. CONCLUSION: We found significant differences in lipid fractions in Hispanic ischemic stroke patients, with lower total cholesterol and low-density lipoprotein, and higher triglyceride levels in Mexicans. These findings highlight the heterogeneity of dyslipidemia among the Hispanic race-ethnic group and may lead to different secondary prevention strategies.


Assuntos
Isquemia/epidemiologia , Transtornos do Metabolismo dos Lipídeos/epidemiologia , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Hispânico ou Latino , Hospitais de Ensino/estatística & dados numéricos , Humanos , Isquemia/complicações , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Acidente Vascular Cerebral/etiologia
5.
Phys Rev Lett ; 111(3): 036601, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23909346

RESUMO

To understand how nonlocal Coulomb interactions affect the phase diagram of correlated electron materials, we report on a method to approximate a correlated lattice model with nonlocal interactions by an effective Hubbard model with on-site interactions U(*) only. The effective model is defined by the Peierls-Feynman-Bogoliubov variational principle. We find that the local part of the interaction U is reduced according to U(*)=U-V[over ¯], where V[over ¯] is a weighted average of nonlocal interactions. For graphene, silicene, and benzene we show that the nonlocal Coulomb interaction can decrease the effective local interaction by more than a factor of 2 in a wide doping range.

6.
J Phys Condens Matter ; 25(13): 135401, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23462374

RESUMO

The kinetics of polymorphous γ-α transformation in Fe is studied numerically within a model taking into account both the lattice and the magnetic degrees of freedom, based on first-principle calculations of the total energy for different magnetic states. It is shown that a magnetoelastic phenomenon, namely the strong sensitivity of the potential relief along the Bain deformation path to the magnetic state, is crucial for a picture of the transformation. With increasing temperature, a scenario for the phase transformation evolves from a homogeneous lattice instability at T < M(s) (M(s) is the temperature of the beginning of the martensitic transformation) to the growth and nucleation of embryos of the new phase at T > M(s). In the latter case, the formation of a tweed-like structure occurs, with a strong short-range order and slow interphase fluctuations.

7.
Phys Rev Lett ; 110(11): 117206, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166573

RESUMO

We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.

8.
J Phys Condens Matter ; 21(17): 175402, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21825417

RESUMO

A recently developed self-consistent ab initio lattice dynamical method has been applied to the high temperature body centered cubic (bcc) phase of La and Th, which are dynamically unstable at low temperatures. The bcc phase of these metals is found to be stabilized by phonon-phonon interactions. The calculated high temperature phonon frequencies for La are found to be in good agreement with the corresponding experimental data.

9.
Phys Rev Lett ; 103(26): 267203, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20366340

RESUMO

The strength of electronic correlation effects in the spin-dependent electronic structure of ferromagnetic bcc Fe(110) has been investigated by means of spin and angle-resolved photoemission spectroscopy. The experimental results are compared to theoretical calculations within the three-body scattering approximation and within the dynamical mean-field theory, together with one-step model calculations of the photoemission process. This comparison indicates that the present state of the art many-body calculations, although improving the description of correlation effects in Fe, give too small mass renormalizations and scattering rates thus demanding more refined many-body theories including nonlocal fluctuations.

10.
Nat Mater ; 6(9): 652-5, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17660825

RESUMO

The ultimate aim of any detection method is to achieve such a level of sensitivity that individual quanta of a measured entity can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity. The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects, which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here, we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required.

11.
Phys Rev Lett ; 99(24): 247205, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18233480

RESUMO

Local perturbations of the crystal and magnetic structure of gamma-iron near carbon interstitial impurity is investigated by ab initio electronic structure calculations. It is shown that the carbon impurity creates locally a region of ferromagnetic ordering with substantial tetragonal distortions. Exchange integrals and solution enthalpy are calculated, the latter being in very good agreement with experimental data. The effect of the local distortions on the carbon-carbon interactions in gamma-iron is discussed.

12.
Nature ; 438(7065): 197-200, 2005 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16281030

RESUMO

Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrödinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA