Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnol Sci Appl ; 16: 19-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106675

RESUMO

Purpose: We report an innovative green nanotechnology utilizing an electron-rich cocktail of phytochemicals from Yucca filamentosa L. to synthesize biocompatible gold nanoparticles without the use of any external chemical reducing agents and evaluate their anti-cancer activity. Methods: Yucca filamentosa L. extract, containing a cocktail of phytochemicals, was prepared, and used to transform gold salt into Y. filamentosa phytochemicals encapsulated gold nanoparticles (YF-AuNPs). Additionally, gum arabic stabilized YF-AuNPs (GAYF-AuNPs) were also prepared to enhance the in vitro/in vivo stability. Anticancer activity was evaluated against prostate (PC-3) and breast (MDAMB-231) cancer cell lines. Targeting abilities of gold nanoparticles were tested using pro-tumor macrophage cell lines. Results: Comprehensive characterization of new nanomedicine agents YF-AuNPs and GAYF-AuNPs revealed spherical, and monodisperse AuNPs with moderate zeta potentials (-19 and -20 mV, respectively), indicating in vitro/in vivo stability. The core size of YF-AuNPs (14 ± 5 nm) and GAYF-AuNPs (10 ± 5 nm) is suitable for optimal penetration into tumor cells through both enhanced permeability and retention (EPR) effect as well as through the receptor mediated endocytosis. Notably, YF-AuNPs exhibited potent anticancer activity against prostate (PC-3) and breast tumors (MDAMB-231) by inducing early and late apoptotic stages. Moreover, YF-AuNPs resulted in elevated levels of anti-tumor cytokines (TNF-α and IL-12) and reduced levels of pro-tumor cytokines (IL-6 and IL-10), provide compelling evidence on the immunomodulatory property of YF-AuNPs. Conclusion: Overall, these Y. filamentosa phytochemicals functionalized nano-Ayurvedic medicine agents demonstrated selective toxicity to cancer cells while sparing normal cells. Most notably, to our knowledge, this is the first study that shows YF-AuNP's targeting efficacy toward pro-tumor macrophage cell lines, suggesting an immunomodulatory pathway for cancer treatment. This work introduces a novel avenue for herbal and nano-Ayurvedic approaches to human cancer treatment, mediated through selective efficacy and immunomodulatory potential.

2.
Pharmaceutics ; 14(5)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35631646

RESUMO

The rapidly growing interest in the application of nanoscience in the future design of radiopharmaceuticals and the development of nanosized radiopharmaceuticals in the late 2000's, resulted in the creation of a Coordinated Research Project (CRP) by the International Atomic Energy Agency (IAEA) in 2014. This CRP entitled 'Nanosized delivery systems for radiopharmaceuticals' involved a team of expert scientist from various member states. This team of scientists worked on a number of cutting-edge areas of nanoscience with a focus on developing well-defined, highly effective and site-specific delivery systems of radiopharmaceuticals. Specifically, focus areas of various teams of scientists comprised of the development of nanoparticles (NPs) based on metals, polymers, and gels, and their conjugation/encapsulation or decoration with various tumor avid ligands such as peptides, folates, and small molecule phytochemicals. The research and development efforts also comprised of developing optimum radiolabeling methods of various nano vectors using diagnostic and therapeutic radionuclides including Tc-99m, Ga-68, Lu-177 and Au-198. Concerted efforts of teams of scientists within this CRP has resulted in the development of various protocols and guidelines on delivery systems of nanoradiopharmaceuticals, training of numerous graduate students/post-doctoral fellows and publications in peer reviewed journals while establishing numerous productive scientific networks in various participating member states. Some of the innovative nanoconstructs were chosen for further preclinical applications-all aimed at ultimate clinical translation for treating human cancer patients. This review article summarizes outcomes of this major international scientific endeavor.

3.
Int J Nanomedicine ; 16: 6957-6981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675516

RESUMO

PURPOSE: We report herein bombesin peptide conjugated water-soluble chitosan gallate as a template for rapid one-pot synthesis of gold nanoparticles (AuNPs) with capabilities to target receptors on prostate cancer cells. METHODS: Water-soluble chitosan (WCS), anchored with gallic acid (GA) and LyslLys3 (1,4,7,10-tetraazacyclo dodecane-1,4,7,10-tetraacetic acid) bombesin 1-14 (DBBN) peptide, provides a tumor targeting nanomedicine agent. WCS nanoplatforms provide attractive strategies with built-in capabilities to reduce gold (III) to gold nanoparticles with stabilizing and tumor-targeting capabilities. WCS-GA-DBBN encapsulation around gold nanoparticles affords optimum in vitro stability. RESULTS: The DBBN content in the WCS-GA-DBBN sample was ~27%w/w. The antioxidant activities of WCS-GA and WCS-GA-DBBN nanocolloids were enhanced by 12 times as compared to the nascent WCS. AuNPs with a desirable hydrodynamic diameter range of 40-60 nm have been efficiently synthesized using WCS-GA and WCS-GA-DBBN platforms. The AuNPs were stable over 4 days after preparation and ~3 days after subjecting to all relevant biological fluids. The AuNPs capped with WCS-GA-DBBN peptide exhibited superior cellular internalization into prostate tumor (PC-3) cells with evidence of receptor mediated endocytosis. CONCLUSION: The AuNPs capped with WCS-GA-DBBN exhibited selective affinity toward prostate cancer cells. AuNPs conjugated with WCS-GA-DBBN serve as a new generation of theranostic agents for treating various neoplastic diseases, thus opening-up new applications in oncology.


Assuntos
Quitosana , Nanopartículas Metálicas , Neoplasias da Próstata , Bombesina , Linhagem Celular Tumoral , Quitosana/análogos & derivados , Ouro , Humanos , Masculino , Peptídeos , Neoplasias da Próstata/tratamento farmacológico , Água
4.
Pharmaceutics ; 13(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452084

RESUMO

The application of nanotechnology in nuclear medicine offers attractive therapeutic opportunities for the treatment of various diseases, including cancer. Indeed, nanoparticles-conjugated targeted alpha-particle therapy (TAT) would be ideal for localized cell killing due to high linear energy transfer and short ranges of alpha emitters. New approaches in radiolabeling are necessary because chemical radiolabeling techniques are rendered sub-optimal due to the presence of recoil energy generated by alpha decay, which causes chemical bonds to break. This review attempts to cover, in a concise fashion, various aspects of physics, radiobiology, and production of alpha emitters, as well as highlight the main problems they present, with possible new approaches to mitigate those problems. Special emphasis is placed on the strategies proposed for managing recoil energy. We will also provide an account of the recent studies in vitro and in vivo preclinical investigations of α-particle therapy delivered by various nanosystems from different materials, including inorganic nanoparticles, liposomes, and polymersomes, and some carbon-based systems are also summarized.

5.
Sci Rep ; 11(1): 16797, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408231

RESUMO

Men with castration-resistant prostate cancer (CRPC) face poor prognosis and increased risk of treatment-incurred adverse effects resulting in one of the highest mortalities among patient population globally. Immune cells act as double-edged sword depending on the tumor microenvironment, which leads to increased infiltration of pro-tumor (M2) macrophages. Development of new immunomodulatory therapeutic agents capable of targeting the tumor microenvironment, and hence orchestrating the transformation of pro-tumor M2 macrophages to anti-tumor M1, would substantially improve treatment outcomes of CRPC patients. We report, herein, Mangiferin functionalized gold nanoparticulate agent (MGF-AuNPs) and its immunomodulatory characteristics in treating prostate cancer. We provide evidence of immunomodulatory intervention of MGF-AuNPs in prostate cancers through observations of enhanced levels of anti-tumor cytokines (IL-12 and TNF-α) with concomitant reductions in the levels of pro-tumor cytokines (IL-10 and IL-6). In the MGF-AuNPs treated groups, IL-12 was elevated to ten-fold while TNF-α was elevated to about 50-fold, while IL-10 and IL-6 were reduced by two-fold. Ability of MGF-AuNPs to target splenic macrophages is invoked via targeting of NF-kB signaling pathway. Finally, therapeutic efficacy of MGF-AuNPs, in treating prostate cancer in vivo in tumor bearing mice, is described taking into consideration various immunomodulatory interventions triggered by this green nanotechnology-based nanomedicine agent.


Assuntos
Fatores Imunológicos/farmacologia , Nanopartículas Metálicas/química , Neoplasias da Próstata/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Xantonas/farmacologia , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ouro/química , Química Verde , Xenoenxertos , Humanos , Fatores Imunológicos/imunologia , Interleucina-12/genética , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/genética , Xantonas/química
6.
Nanobiomedicine (Rij) ; 8: 1849543521995310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643450

RESUMO

Green nanotechnology has drawn major attention because of its ecofriendly and economical biosynthetic protocols. Synthesis of gold nanoparticles (AuNPs) using plant secondary metabolites is considered as a safer and cheaper option. Plants contain phytochemicals that has been used traditionally for treatment of various diseases, and proved to be non-toxic to healthy tissues. These phytochemicals play an important role in bio-reduction processes as reducing and stabilizing agents, and renders NPs selective toxicity towards diseased tissues. The study reports on the synthesis of AuNPs using Acai berry (AB) and Elderberry (EB) extracts and their anti-cancer properties. Formation of berry-AuNPs was confirmed through measurement of physico-chemical properties. The stability of the AuNPs was tested in biocompatible solutions. Anti-cancer activity of berry extracts and AuNPs was evaluated on the prostate (PC-3) and pancreatic (Panc-1) cancer cells. The berry extracts did not show toxicity to the cells, except for AB extracts on PC-3 cells at higher concentrations. The berry-AuNPs showed potential anti-cancer activities, and these effects could be further exploited for treatment of both the prostate and pancreatic cancers. Further studies are required to study the NP mechanism of action and specificity, as well as identify the phytochemicals involved in the synthesis of AuNPs.

7.
Nanotechnol Sci Appl ; 14: 69-89, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776426

RESUMO

INTRODUCTION: Functionalization of water-soluble chitosan (WSCS) nanocolloids with, gold nanoparticles (AuNPs), and LyslLys3 (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-bombesin 1-14 (DOTA-BBN) peptide affords an innovative pathway to produce prostate tumor cell-specific nanomedicine agents with potential applications in molecular imaging and therapy. METHODS: The preparation involves the production and full characterization of water-soluble chitosan (WSCS), via gamma (γ) rays (80 kGy) irradiation, followed by DOTA-BBN conjugation for subsequent use as an effective template toward the synthesis of tumor cell-specific AuNPs-WSCS-DOTA-BBN. RESULTS: The WSCS-DOTA-BBN polymeric nanoparticles (86 ± 2.03 nm) served multiple roles as reducing and stabilizing agents in the overall template synthesis of tumor cell-targeted AuNPs. The AuNPs capped with WSCS and WSCS-DOTA-BBN exhibited average Au-core diameter of 17 ± 8 nm and 20 ± 7 nm with hydrodynamic diameters of 56 ± 1 and 67± 2 nm, respectively. The AuNPs-WSCS-DOTA-BBN showed optimum in vitro stability in biologically relevant solutions. The targeted AuNPs showed selective affinity toward GRP receptors overexpressed in prostate cancer cells (PC-3 and LNCaP). DISCUSSION: The AuNPs-WSCS-DOTA-BBN displayed cytotoxicity effects against PC-3 and LNCaP cancer cells, with concomitant safety toward the HAECs normal cells. The AuNPs-WSCS-DOTA-BBN showed synergistic targeting toward tumor cells with selective cytotoxicity of AuNPs towards PC-3 and LNCaP cells. Our investigations provide compelling evidence that AuNPs functionalized with WSCS-DOTA-BBN is an innovative nanomedicine approach for use in molecular imaging and therapy of GRP receptor-positive tumors. The template synthesis of AuNPs-WSCS-DOTA-BBN serves as an excellent non-radioactive surrogate for the development of the corresponding 198AuNPs theragnostic nanoradiopharmaceutical for use in cancer diagnosis and therapy.

8.
Phys Med Biol ; 66(4): 045016, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33561008

RESUMO

PURPOSE: Nanoparticles (NPs) with radioactive atoms incorporated within the structure of the NP or bound to its surface, functionalized with biomolecules are reported as an alternative to low-dose-rate seed-based brachytherapy. In this study, authors report a mathematical dosimetric study on low-dose rate brachytherapy using radioactive NPs. METHOD: Single-cell dosimetry was performed by calculating cellular S-values for spherical cell model using Au-198, Pd-103 and Sm-153 NPs. The cell survival and tumor volume versus time curves were calculated and compared to the experimental studies on radiotherapeutic efficiency of radioactive NPs published in the literature. Finally, the radiotherapeutic efficiency of Au-198, Pd-103 and Sm-153 NPs was tested for variable: administered radioactivity, tumor volume and tumor cell type. RESULT: At the cellular level Sm-153 presented the highest S-value, followed by Pd-103 and Au-198. The calculated cell survival and tumor volume curves match very well with the published experimental results. It was found that Au-198 and Sm-153 can effectively treat highly aggressive, large tumor volumes with low radioactivity. CONCLUSION: The accurate knowledge of uptake rate, washout rate of NPs, radio-sensitivity and tumor repopulation rate is important for the calculation of cell survival curves. Self-absorption of emitted radiation and dose enhancement due to AuNPs must be considered in the calculations. Selection of radionuclide for radioactive NP must consider size of tumor, repopulation rate and radiosensitivity of tumor cells. Au-198 NPs functionalized with Mangiferin are a suitable choice for treating large, radioresistant and rapidly growing tumors.


Assuntos
Braquiterapia/métodos , Simulação por Computador , Doses de Radiação , Radioisótopos/química , Radioisótopos/uso terapêutico , Radioisótopos de Ouro/química , Radioisótopos de Ouro/uso terapêutico , Método de Monte Carlo , Neoplasias/radioterapia , Paládio/química , Paládio/uso terapêutico , Radiometria , Dosagem Radioterapêutica , Samário/química , Samário/uso terapêutico
9.
Int J Nanomedicine ; 15: 181-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021173

RESUMO

PURPOSE: The overarching objective of this investigation was to investigate the intervention of green nanotechnology to transform the ancient holistic Ayurvedic medicine scientifically credible through reproducible formulations and rigorous pre-clinical/clinical evaluations. METHODS: We provide, herein, full details: (i) on the discovery and full characterization of gold nanoparticles-based Nano Swarna Bhasma (henceforth referred to as NSB drug); (ii) In vitro anti-tumor properties of NSB drug in breast tumor cells; (iii) pre-clinical therapeutic efficacy studies of NSB drug in breast tumor bearing SCID mice through oral delivery protocols and (iv) first results of clinical translation, from mice to human breast cancer patients, through pilot human clinical trials, conducted according to the Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homoeopathy (abbreviated as AYUSH) regulatory guidelines of the Government of India in metastatic breast cancer patients. RESULTS: The preclinical in vitro and in vivo investigations, in breast tumor bearing mice, established unequivocally that the NSB Nano-Ayurvedic medicine-gold nanoparticles-based drug is highly effective in controlling the growth of breast tumors in a dose dependent fashion in vivo. These encouraging pre-clinical results prompted us to seek permission from the Indian Government's holistic medicine approval authority, AYUSH, for conducting clinical trials in human patients. Patients treated with the NSB drug capsules along with the "standard of care treatment" (Arm B) exhibited 100% clinical benefits when compared to patients in the treatment Arm A, thus indicating the tremendous clinical benefits of NSB drug in adjuvant therapy. CONCLUSION: We have succeeded in clinically translating, from mice to humans, in using proprietary combinations of gold nanoparticles and phytochemicals to develop the Nano-Ayurvedic drug: Nano Swarna Bhasma (NSB), through innovative green nanotechnology, for treating human metastatic breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ouro/farmacologia , Ayurveda/métodos , Nanopartículas Metálicas/química , Administração Oral , Adulto , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Ouro/química , Química Verde , Humanos , Índia , Mangifera/química , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/uso terapêutico , Camundongos SCID , Pessoa de Meia-Idade , Nanotecnologia/métodos , Resultado do Tratamento , Xantonas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
10.
Int J Nanomedicine ; 14: 4413-4428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417252

RESUMO

Background: As part of our continuing quest to enhance the efficacy of bioactive phytochemicals in cancer therapy, we report an innovative green nanotechnology approach toward the use of resveratrol for the production of biocompatible resveratrol-conjugated gold nanoparticles (Res-AuNPs). Our overarching aim is to exploit the inherent pro-apoptotic properties of gold nanoparticles (AuNPs) through synergistic anti-tumor characteristics of resveratrol, with the aim of developing a new class of green nanotechnology-based phytochemical-embedded AuNPs for applications in oncology. Method: Resveratrol was used to reduce Au3+ to Au0 for the synthesis of Res-AuNPs at room temperature and gum arabic (GA) was used to further encapsulate the nanoparticulate surface to increase the overall stability of the AuNPs. This comprehensive study involves the synthesis, full characterization and in vitro stability of Res-AuNPs in various biological media for their ultimate applications as anti-cancer agents against human breast (MDAMB-231), pancreatic (PANC-1) and prostate (PC-3) cancers. Results: This strategy to systematically increase the corona of resveratrol on AuNPs, in order to gain insights into the interrelationship of the phytochemical corona on the overall anti-tumor activities of Res-AuNPs, proved successful. The increased resveratrol corona on Res-AuNPs showed superior anti-cancer effects, attributed to an optimal cellular uptake after 24-hour incubation, while GA provided a protein matrix support for enhanced trans-resveratrol loading onto the surface of the AuNPs. Conclusion: The approach described in this study harnesses the benefits of nutraceuticals and nanoparticles toward the development of Res-AuNPs. We provide compelling evidence that the increased corona of resveratrol on AuNPs enhances the bioavailability of resveratrol so that therapeutically active species can be optimally available in vivo for applications in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Ouro/química , Nanopartículas Metálicas/química , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/patologia , Resveratrol/farmacologia , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Endocitose , Feminino , Humanos , Concentração Inibidora 50 , Masculino , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Polifenóis/química , Polifenóis/farmacologia , Resveratrol/química , Espectrofotometria Ultravioleta , Resultado do Tratamento
11.
Rep Pract Oncol Radiother ; 24(3): 288-293, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031569

RESUMO

AIM: The objective of this research was to estimate the dose distribution delivered by radioactive gold nanoparticles (198AuNPs or 199AuNPs) to the tumor inside the human prostate as well as to normal tissues surrounding the tumor using the Monte-Carlo N-Particle code (MCNP-6.1.1 code). BACKGROUND: Radioactive gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated to treat prostate cancer in animals. In order to use them as a new therapeutic modality to treat human prostate cancer, accurate radiation dosimetry simulations are required to estimate the energy deposition in the tumor and surrounding tissue and to establish the course of therapy for the patient. MATERIALS AND METHODS: A simple geometrical model of a human prostate was used, and the dose deposited by 198AuNPs or 199AuNPs to the tumor within the prostate as well as to the healthy tissue surrounding the prostate was calculated using the MCNP code. Water and A-150 TEP phantoms were used to simulate the soft and tumor tissues. RESULTS: The results showed that the dose due to 198AuNPs or 199AuNPs, which are distributed homogenously in the tumor, had a maximal value in the tumor region and then rapidly decreased toward the prostate-tumor interface and surrounding organs. However, the dose deposited by 198Au is significantly higher than the dose deposited by 199Au in the tumor region as well as normal tissues. CONCLUSIONS: According to the MCNP results, 198AuNPs are a promising modality to treat prostate cancer and other cancers and 199AuNPs could be used for imaging purposes.

12.
Biomed Pharmacother ; 89: 1045-1054, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28298068

RESUMO

BACKGROUND: In our previous work, we have extensively evaluated the physiochemical characteristics of Gum Arabic-encapsulated gold nanoparticles (GA-AuNPs; 15-18nm) and reported their effectiveness in stopping the tumor initiation via inhibiting the pre-neoplastic lesions in liver. OBJECTIVE: The rationale of this study is to detect the efficiency of using GA-AuNPs in photothermal application as a non-invasive technique against lung tumor. We investigated the cytotoxicity of GA-AuNPs on A549 cells, and then studied their apoptotic, anti-inflammatory, lipid peroxidation and anti-neovascular effect in in vivo model using a chemically-induced lung cancer in mice. The histopathological changes due to GA-AuNPs were investigated. RESULTS: In the presence of laser irradiation, GA-AuNPs had a considerable cytotoxicity against A549 cells. The treatment of lung tumor-bearing mice with GA-AuNPs followed by laser exposure enhanced the apoptotic pathway and this was obvious from the histopathological investigations and the elevations in cytochrome-c, death receptor 5 and the subsequent upregulation of caspase-3, we also reported a significant reduction in the levels of the inflammatory mediator TNF-α and the angiogenesis inducer VEGF. An induction of lipid peroxidation was also reported upon treatment with either GA or GA-AuNPs. CONCLUSION: GA-AuNPs showed no cytotoxicity in the absence of light, however the combination of GA-AuNPs with laser induced cell death in lung tumor tissues with a reduction in the inflammation and angiogenesis together with an elevation in lipid peroxidation, suggesting the potential use of these functionalized nanoparticles as a promising photothermal non-invasive treatment modality.


Assuntos
Ouro/farmacologia , Goma Arábica/química , Neoplasias Pulmonares/terapia , Nanopartículas Metálicas/química , Fototerapia/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ouro/química , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
13.
Int J Mol Sci ; 17(9)2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27563889

RESUMO

The purpose of our work was to select phages displaying peptides capable of binding to vascular markers present in human atheroma, and validate their capacity to target the vascular markers in vitro and in low-density lipoprotein receptor knockout (LDLr(-/-)) mouse model of atherosclerosis. By peptide fingerprinting on human atherosclerotic tissues, we selected and isolated four different peptides sequences, which bind to atherosclerotic lesions and share significant similarity to known human proteins with prominent roles in atherosclerosis. The CTHRSSVVC-phage peptide displayed the strongest reactivity with human carotid atherosclerotic lesions (p < 0.05), when compared to tissues from normal carotid arteries. This peptide sequence shares similarity to a sequence present in the fifth scavenger receptor cysteine-rich (SRCR) domain of CD163, which appeared to bind to CD163, and subsequently, was internalized by macrophages. Moreover, the CTHRSSVVC-phage targets atherosclerotic lesions of a low-density lipoprotein receptor knockout (LDLr(-/-)) mouse model of atherosclerosis in vivo to High-Fat diet group versus Control group. Tetraazacyclododecane-1,4,7,10-tetraacetic acid-CTHRSSVVC peptide (DOTA-CTHRSSVVC) was synthesized and labeled with (111)InCl3 in >95% yield as determined by high performance liquid chromatography (HPLC), to validate the binding of the peptide in atherosclerotic plaque specimens. The results supported our hypothesis that CTHRSSVVC peptide has a remarkable sequence for the development of theranostics approaches in the treatment of atherosclerosis and other diseases.


Assuntos
Aterosclerose/diagnóstico , Imagem Molecular/métodos , Peptídeos/metabolismo , Animais , Antígenos CD/química , Antígenos de Diferenciação Mielomonocítica/química , Aterosclerose/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/química , Receptores de Superfície Celular/química , Receptores de LDL/deficiência , Receptores de LDL/genética
14.
J Photochem Photobiol B ; 163: 47-56, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27533849

RESUMO

This study validates the utility of Gum Arabic-conjugated gold nanoparticles (GA-AuNPs) and laser to induce photothermal inhibition of hepatocarcinogenesis, via employing a diethylnitrosamine (DEN)-mediated hepatocellular carcinoma model. This work included both of in vitro and in vivo studies; to investigate the GA-AuNPs cytotoxicity and phototoxicity in hepatic cell line; to delineate the GA-AuNPs therapeutic efficiency in DEN-induced preneoplastic lesions (PNLs) in the liver of Balb-C mice. The therapeutic effects of GA-AuNPs on the mediators of apoptosis, inflammation, and tumor initiation, as well as the histopathological changes in preneoplastic liver have been investigated. Our results infer that GA-AuNPs in combination with laser irradiation led to a significant reduction in the cell viability and in histone deacetylase activity in hepatocarcinoma HepG2 cells. In chemically-induced PNLs mice model our results have demonstrated that GA-AuNPs, with or without laser irradiation, induced cancer cell apoptosis through the activation of death receptors DR5 and caspase-3 and inhibited both of the PNLs incidence and the initiation marker (placental glutathione S-transferase; GST-P). The laser-stimulated GA-AuNPs significantly reduced the tumor necrosis factor-α levels. In summary, GA-AuNPs with laser treatment inhibited liver PNLs via the induction of the extrinsic apoptosis pathway and the inhibition of inflammation.


Assuntos
Ouro/química , Goma Arábica/química , Goma Arábica/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas Metálicas/química , Fototerapia/métodos , Lesões Pré-Cancerosas/terapia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Transformação Celular Neoplásica , Dietilnitrosamina/efeitos adversos , Glutationa S-Transferase pi/metabolismo , Células Hep G2 , Histona Acetiltransferases/metabolismo , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Necrose , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Int J Nanomedicine ; 9: 5001-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25378926

RESUMO

INTRODUCTION: Gum arabic-coated radioactive gold nanoparticles (GA-(198)AuNPs) offer several advantages over traditional brachytherapy in the treatment of prostate cancer, including homogenous dose distribution and higher dose-rate irradiation. Our objective was to determine the short-term safety profile of GA-(198)AuNPs injected intralesionally. We proposed that a single treatment of GA-(198)AuNPs would be safe with minimal-to-no evidence of systemic or local toxicity. METHODS: Nine dogs with spontaneously occurring prostatic cancer were treated. Injections were performed with ultrasound or computerized tomography guidance. Complete blood counts, chemistry panels, and urinalyses were performed at weekly intervals for 1 month and imaging was repeated 4 weeks postinjection. Planar scintigraphic images were obtained within 30 minutes of injection. RESULTS: No statistically significant difference was found in any hematologic or biochemical parameter studied, nor was any evidence of tumor swelling or abscessation found in eight dogs with repeat imaging; one dog died secondary to urethral obstruction 12 days following injection. At 30 minutes postinjection, an average of 53% of injected dose in seven dogs was retained in the prostate, with loss of remaining activity in the bladder and urethra; no systemic uptake was detected. CONCLUSION: GA-(198)AuNP therapy had no short-term toxicity in the treatment of prostatic cancer. While therapeutic agent was found in the prostate immediately following injection, some loss of agent was detected in the bladder and urethra. Localization of radioactivity within the prostate was lower than anticipated and likely due to normal vestigial prostatic ducts. Therefore, further study of retention, dosimetry, long-term toxicity, and efficacy of this treatment is warranted prior to Phase I trials in men.


Assuntos
Ouro/toxicidade , Goma Arábica/toxicidade , Nanopartículas Metálicas/toxicidade , Neoplasias da Próstata/radioterapia , Animais , Braquiterapia , Cães , Ouro/uso terapêutico , Goma Arábica/uso terapêutico , Masculino , Nanopartículas Metálicas/uso terapêutico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/veterinária , Tomografia Computadorizada por Raios X
16.
J Biomed Nanotechnol ; 10(3): 383-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24730234

RESUMO

The goal of our study was to demonstrate the utility of nanocrystalline gold as an X-ray contrast agent for imaging tumor in living subjects. Even though significant progress has been achieved in this area by researchers, clinical translation remains challenging. Here, we investigated biocompatible gum Arabic stabilized gold nanocrystals (GA-AuNPs) as X-ray contrast agent in tumor bearing mice and dog. Single intratumoral injections of GA-AuNP resulted in X-ray contrast change of -26 HU in the tumor region after 1 hour post-injection period. Subsequently, five intratumoral injections were performed in the mice. The change in CT number in tumor region is not progressive; rather it reaches a saturation point after fourth injection. These data suggested that accumulation of GA-AuNP reaches a threshold limit within a short time period (5 h), and is retained in the tumor tissue for the rest of the period of investigation. A pilot study was conducted in a client-owned dog presented with collision tumor of thyroid carcinoma and osteosarcoma. In this study, GA-AuNP was injected intratumorally in dog and a contrast enhancement of 12 deltaHU was observed. The CT images of both mice and dog clearly demonstrated that GA-AuNP was effectively distributed and retained throughout the tumor site. The CT data obtained by the present study would provide the crucial dosimetry information for strategic therapy planning using this construct. Both mice and dog did not show any clinical changes, thereby confirming that GA-AuNP did not induce toxicity and can be explored for future clinical applications.


Assuntos
Meios de Contraste , Ouro , Nanopartículas Metálicas , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Animais , Cães , Avaliação Pré-Clínica de Medicamentos , Feminino , Goma Arábica/química , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias/terapia , Imagens de Fantasmas , Prognóstico , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/veterinária , Células Tumorais Cultivadas
17.
Proc Natl Acad Sci U S A ; 109(31): 12426-31, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22802668

RESUMO

Systemic delivery of therapeutic agents to solid tumors is hindered by vascular and interstitial barriers. We hypothesized that prostate tumor specific epigallocatechin-gallate (EGCg) functionalized radioactive gold nanoparticles, when delivered intratumorally (IT), would circumvent transport barriers, resulting in targeted delivery of therapeutic payloads. The results described herein support our hypothesis. We report the development of inherently therapeutic gold nanoparticles derived from the Au-198 isotope; the range of the (198)Au ß-particle (approximately 11 mm in tissue or approximately 1100 cell diameters) is sufficiently long to provide cross-fire effects of a radiation dose delivered to cells within the prostate gland and short enough to minimize the radiation dose to critical tissues near the periphery of the capsule. The formulation of biocompatible (198)AuNPs utilizes the redox chemistry of prostate tumor specific phytochemical EGCg as it converts gold salt into gold nanoparticles and also selectively binds with excellent affinity to Laminin67R receptors, which are over expressed in prostate tumor cells. Pharmacokinetic studies in PC-3 xenograft SCID mice showed approximately 72% retention of (198)AuNP-EGCg in tumors 24 h after intratumoral administration. Therapeutic studies showed 80% reduction of tumor volumes after 28 d demonstrating significant inhibition of tumor growth compared to controls. This innovative nanotechnological approach serves as a basis for designing biocompatible target specific antineoplastic agents. This novel intratumorally injectable (198)AuNP-EGCg nanotherapeutic agent may provide significant advances in oncology for use as an effective treatment for prostate and other solid tumors.


Assuntos
Anticarcinógenos/farmacocinética , Catequina/análogos & derivados , Ouro/farmacocinética , Nanopartículas Metálicas , Neoplasias da Próstata/tratamento farmacológico , Animais , Anticarcinógenos/farmacologia , Catequina/farmacocinética , Catequina/farmacologia , Linhagem Celular Tumoral , Feminino , Ouro/farmacologia , Radioisótopos de Ouro/farmacocinética , Radioisótopos de Ouro/farmacologia , Humanos , Masculino , Camundongos , Camundongos SCID , Tamanho da Partícula , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-21953803

RESUMO

The development of new treatment modalities that offer clinicians the ability to reduce sizes of tumor prior to surgical resection or to achieve complete ablation without surgery would be a significant medical breakthrough in the overall care and treatment of prostate cancer patients. The goal of our investigation is aimed at validating the hypothesis that Gum Arabic-functionalized radioactive gold nanoparticles (GA-(198) AuNP) have high affinity toward tumor vasculature. We hypothesized further that intratumoral delivery of the GA-(198) AuNP agent within prostate tumor will allow optimal therapeutic payload that will significantly or completely ablate tumor without side effects, in patients with hormone refractory prostate cancer. In order to evaluate the therapeutic efficacy of this new nanoceutical, GA-(198) AuNP was produced by stabilization of radioactive gold nanoparticles ((198) Au) with the FDA-approved glycoprotein, GA. This review will describe basic and clinical translation studies toward realization of the therapeutic potential and myriad of clinical applications of GA-(198) AuNP agent in treating prostate and various solid tumors in human cancer patients.


Assuntos
Ouro/química , Ouro/uso terapêutico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias da Próstata/radioterapia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico , Humanos , Masculino
19.
Pharm Res ; 28(2): 279-91, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20872051

RESUMO

PURPOSE: The purpose of the present study was to explore the utilization of cinnamon-coated gold nanoparticles (Cin-AuNPs) as CT/optical contrast-enhancement agents for detection of cancer cells. METHODS: Cin-AuNPs were synthesized by a "green" procedure, and the detailed characterization was performed by physico-chemical analysis. Cytotoxicity and cellular uptake studies were carried out in normal human fibroblast and cancerous (PC-3 and MCF-7) cells, respectively. The efficacy of detecting cancerous cells was monitored using a photoacoustic technique. In vivo biodistribution was studied after IV injection of Cin-AuNPs in mice, and also a CT phantom model was generated. RESULTS: Biocompatible Cin-AuNPs were synthesized with high purity. Significant uptake of these gold nanoparticles was observed in PC-3 and MCF-7 cells. Cin-AuNPs internalized in cancerous cells facilitated detectable photoacoustic signals. In vivo biodistribution in normal mice showed steady accumulation of gold nanoparticles in lungs and rapid clearance from blood. Quantitative analysis of CT values in phantom model revealed that the cinnamon-phytochemical-coated AuNPs have reasonable attenuation efficiency. CONCLUSIONS: The results indicate that these non-toxic Cin-AuNPs can serve as excellent CT/ photoacoustic contrast-enhancement agents and may provide a novel approach toward tumor detection through nanopharmaceuticals.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Neoplasias/diagnóstico , Intensificação de Imagem Radiográfica/métodos , Animais , Linhagem Celular Tumoral , Cinnamomum zeylanicum/química , Meios de Contraste/química , Fibroblastos , Humanos , Camundongos , Neoplasias/patologia , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Distribuição Tecidual
20.
Proc Natl Acad Sci U S A ; 107(19): 8760-5, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20410458

RESUMO

Development of cancer receptor-specific gold nanoparticles will allow efficient targeting/optimum retention of engineered gold nanoparticles within tumors and thus provide synergistic advantages in oncology as it relates to molecular imaging and therapy. Bombesin (BBN) peptides have demonstrated high affinity toward gastrin-releasing peptide (GRP) receptors in vivo that are overexpressed in prostate, breast, and small-cell lung carcinoma. We have synthesized a library of GRP receptor-avid nanoplatforms by conjugating gold nanoparticles (AuNPs) with BBN peptides. Cellular interactions and binding affinities (IC(50)) of AuNP-BBN conjugates toward GRP receptors on human prostate cancer cells have been investigated in detail. In vivo studies using AuNP-BBN and its radiolabeled surrogate (198)AuNP-BBN, exhibiting high binding affinity (IC(50) in microgram ranges), provide unequivocal evidence that AuNP-BBN constructs are GRP-receptor-specific showing accumulation with high selectivity in GRP-receptor-rich pancreatic acne in normal mice and also in tumors in prostate-tumor-bearing, severe combined immunodeficient mice. The i.p. mode of delivery has been found to be efficient as AuNP-BBN conjugates showed reduced RES organ uptake with concomitant increase in uptake at tumor targets. The selective uptake of this new generation of GRP-receptor-specific AuNP-BBN peptide analogs has demonstrated realistic clinical potential in molecular imaging via x-ray computed tomography techniques as the contrast numbers in prostate tumor sites are severalfold higher as compared to the pretreatment group (Hounsfield unit = 150).


Assuntos
Bombesina/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/química , Neoplasias/metabolismo , Receptores da Bombesina/metabolismo , Animais , Bombesina/administração & dosagem , Bombesina/química , Bombesina/farmacocinética , Linhagem Celular Tumoral , Ouro/administração & dosagem , Ouro/farmacocinética , Humanos , Injeções Intraperitoneais , Masculino , Nanopartículas Metálicas/administração & dosagem , Camundongos , Peso Molecular , Solubilidade/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos , Tomografia Computadorizada por Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA