Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097292

RESUMO

Control of Mycobacterium tuberculosis (Mtb) infection requires generation of T cells that migrate to granulomas, complex immune structures surrounding sites of bacterial replication. Here we compared the gene expression profiles of T cells in pulmonary granulomas, bronchoalveolar lavage, and blood of Mtb-infected rhesus macaques to identify granuloma-enriched T cell genes. TNFRSF8/CD30 was among the top genes upregulated in both CD4 and CD8 T cells from granulomas. In mice, CD30 expression on CD4 T cells is required for survival of Mtb infection, and there is no major role for CD30 in protection by other cell types. Transcriptomic comparison of WT and CD30-/- CD4 T cells from the lungs of Mtb-infected mixed bone marrow chimeric mice showed that CD30 directly promotes CD4 T cell differentiation and the expression of multiple effector molecules. These results demonstrate that the CD30 co-stimulatory axis is highly upregulated on granuloma T cells and is critical for protective T cell responses against Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Linfócitos T CD4-Positivos , Diferenciação Celular , Granuloma/metabolismo , Macaca mulatta , Tuberculose/microbiologia , Antígeno Ki-1/imunologia
2.
J Exp Med ; 219(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069923

RESUMO

Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation-mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis.


Assuntos
Ferroptose , Glutationa Peroxidase/metabolismo , Tuberculose , Animais , Glutationa/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Transgênicos , Necrose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Tuberculose/imunologia , Tuberculose/metabolismo
3.
Cell Rep ; 39(9): 110896, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649361

RESUMO

HIV/Mycobacterium tuberculosis (Mtb) co-infected individuals have an increased risk of tuberculosis prior to loss of peripheral CD4 T cells, raising the possibility that HIV co-infection leads to CD4 T cell depletion in lung tissue before it is evident in blood. Here, we use rhesus macaques to study the early effects of simian immunodeficiency virus (SIV) co-infection on pulmonary granulomas. Two weeks after SIV inoculation of Mtb-infected macaques, Mtb-specific CD4 T cells are dramatically depleted from granulomas, before CD4 T cell loss in blood, airways, and lymph nodes, or increases in bacterial loads or radiographic evidence of disease. Spatially, CD4 T cells are preferentially depleted from the granuloma core and cuff relative to B cell-rich regions. Moreover, live imaging of granuloma explants show that intralesional CD4 T cell motility is reduced after SIV co-infection. Thus, granuloma CD4 T cells may be decimated before many co-infected individuals experience the first symptoms of acute HIV infection.


Assuntos
Coinfecção , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Tuberculose , Animais , Linfócitos T CD4-Positivos , Coinfecção/patologia , Granuloma/patologia , Infecções por HIV/complicações , Infecções por HIV/patologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Tuberculose/patologia
4.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34347010

RESUMO

Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the activities of multiple leukocyte subsets, yet the roles of the different innate effector cells during tuberculosis are incompletely understood. Here we uncover an unexpected association between eosinophils and Mtb infection. In humans, eosinophils are decreased in the blood but enriched in resected human tuberculosis lung lesions and autopsy granulomas. An influx of eosinophils is also evident in infected zebrafish, mice, and nonhuman primate granulomas, where they are functionally activated and degranulate. Importantly, using complementary genetic models of eosinophil deficiency, we demonstrate that in mice, eosinophils are required for optimal pulmonary bacterial control and host survival after Mtb infection. Collectively, our findings uncover an unexpected recruitment of eosinophils to the infected lung tissue and a protective role for these cells in the control of Mtb infection in mice.


Assuntos
Eosinófilos/fisiologia , Granulócitos/fisiologia , Pulmão/microbiologia , Tuberculose/microbiologia , Tuberculose/patologia , Adulto , Animais , Feminino , Granulócitos/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Tuberculose Latente/microbiologia , Pulmão/patologia , Macaca mulatta , Masculino , Camundongos Mutantes , Mycobacterium tuberculosis/patogenicidade , Tuberculose/tratamento farmacológico , Peixe-Zebra/microbiologia
5.
Sci Immunol ; 6(55)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452107

RESUMO

Boosting immune cell function by targeting the coinhibitory receptor PD-1 may have applications in the treatment of chronic infections. Here, we examine the role of PD-1 during Mycobacterium tuberculosis (Mtb) infection of rhesus macaques. Animals treated with anti-PD-1 monoclonal antibody developed worse disease and higher granuloma bacterial loads compared with isotype control-treated monkeys. PD-1 blockade increased the number and functionality of granuloma Mtb-specific CD8 T cells. In contrast, Mtb-specific CD4 T cells in anti-PD-1-treated macaques were not increased in number or function in granulomas, expressed increased levels of CTLA-4, and exhibited reduced intralesional trafficking in live imaging studies. In granulomas of anti-PD-1-treated animals, multiple proinflammatory cytokines were elevated, and more cytokines correlated with bacterial loads, leading to the identification of a role for caspase 1 in the exacerbation of tuberculosis after PD-1 blockade. Last, increased Mtb bacterial loads after PD-1 blockade were found to associate with the composition of the intestinal microbiota before infection in individual macaques. Therefore, PD-1-mediated coinhibition is required for control of Mtb infection in macaques, perhaps because of its role in dampening detrimental inflammation and allowing for normal CD4 T cell responses.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/efeitos adversos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Tuberculose/tratamento farmacológico , Animais , Carga Bacteriana/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígeno CTLA-4/metabolismo , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Macaca mulatta , Masculino , Camundongos , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Índice de Gravidade de Doença , Exacerbação dos Sintomas , Tuberculose/diagnóstico , Tuberculose/imunologia , Tuberculose/microbiologia
6.
Nat Immunol ; 21(12): 1528-1539, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020661

RESUMO

Mutations that impact immune cell migration and result in immune deficiency illustrate the importance of cell movement in host defense. In humans, loss-of-function mutations in DOCK8, a guanine exchange factor involved in hematopoietic cell migration, lead to immunodeficiency and, paradoxically, allergic disease. Here, we demonstrate that, like humans, Dock8-/- mice have a profound type 2 CD4+ helper T (TH2) cell bias upon pulmonary infection with Cryptococcus neoformans and other non-TH2 stimuli. We found that recruited Dock8-/-CX3CR1+ mononuclear phagocytes are exquisitely sensitive to migration-induced cell shattering, releasing interleukin (IL)-1ß that drives granulocyte-macrophage colony-stimulating factor (GM-CSF) production by CD4+ T cells. Blocking IL-1ß, GM-CSF or caspase activation eliminated the type-2 skew in mice lacking Dock8. Notably, treatment of infected wild-type mice with apoptotic cells significantly increased GM-CSF production and TH2 cell differentiation. This reveals an important role for cell death in driving type 2 signals during infection, which may have implications for understanding the etiology of type 2 CD4+ T cell responses in allergic disease.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/deficiência , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Animais , Biomarcadores , Caspases/metabolismo , Movimento Celular/genética , Movimento Celular/imunologia , Citocinas/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Transdução de Sinais
7.
Infect Immun ; 86(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30201702

RESUMO

Mucosal-associated invariant T cells (MAITs) are positioned in airways and may be important in the pulmonary cellular immune response against Mycobacterium tuberculosis infection, particularly prior to priming of peptide-specific T cells. Accordingly, there is interest in the possibility that boosting MAITs through tuberculosis (TB) vaccination may enhance protection, but MAIT responses in the lungs during tuberculosis are poorly understood. In this study, we compared pulmonary MAIT and peptide-specific CD4 T cell responses in M. tuberculosis-infected rhesus macaques using 5-OP-RU-loaded MR-1 tetramers and intracellular cytokine staining of CD4 T cells following restimulation with an M. tuberculosis-derived epitope megapool (MTB300), respectively. Two of four animals showed a detectable increase in the number of MAIT cells in airways at later time points following infection, but by ∼3 weeks postexposure, MTB300-specific CD4 T cells arrived in the airways and greatly outnumbered MAITs thereafter. In granulomas, MTB300-specific CD4 T cells were ∼20-fold more abundant than MAITs. CD69 expression on MAITs correlated with tissue residency rather than bacterial loads, and the few MAITs found in granulomas poorly expressed granzyme B and Ki67. Thus, MAIT accumulation in the airways is variable and late, and MAITs display little evidence of activation in granulomas during tuberculosis in rhesus macaques.


Assuntos
Interações entre Hospedeiro e Microrganismos/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose/imunologia , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Líquido da Lavagem Broncoalveolar , Granuloma/imunologia , Granuloma/microbiologia , Granzimas/genética , Imunidade Celular , Antígeno Ki-67/genética , Lectinas Tipo C/genética , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Ativação Linfocitária , Macaca mulatta , Mycobacterium tuberculosis , Células Th1/imunologia
8.
Nat Microbiol ; 3(11): 1198-1205, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30202016

RESUMO

Mycobacterium tuberculosis infection (Mtb) is the leading cause of death due to a single infectious agent and is among the top ten causes of all human deaths worldwide1. CD4 T cells are essential for resistance to Mtb infection, and for decades it has been thought that IFNγ production is the primary mechanism of CD4 T-cell-mediated protection2,3. However, IFNγ responses do not correlate with host protection, and several reports demonstrate that additional anti-tuberculosis CD4 T-cell effector functions remain unaccounted for4-8. Here we show that the tumour-necrosis factor (TNF) superfamily molecule CD153 (encoded by the gene Tnfsf8) is required for control of pulmonary Mtb infection by CD4 T cells. In Mtb-infected mice, CD153 expression is highest on Mtb-specific T helper 1 (TH1) cells in the lung tissue parenchyma, but its induction does not require TH1 cell polarization. CD153-deficient mice develop high pulmonary bacterial loads and succumb early to Mtb infection. Reconstitution of T-cell-deficient hosts with either Tnfsf8-/- or Ifng-/- CD4 T cells alone fails to rescue mice from early mortality, but reconstitution with a mixture of Tnfsf8-/- and Ifng-/- CD4 T cells provides similar protection as wild-type T cells. In Mtb-infected non-human primates, CD153 expression is much higher on Ag-specific CD4 T cells in the airways compared to blood, and the frequency of Mtb-specific CD153-expressing CD4 T cells inversely correlates with bacterial loads in granulomas. In Mtb-infected humans, CD153 defines a subset of highly polyfunctional Mtb-specific CD4 T cells that are much more abundant in individuals with controlled latent Mtb infection compared to those with active tuberculosis. In all three species, Mtb-specific CD8 T cells did not upregulate CD153 following peptide stimulation. Thus, CD153 is a major immune mediator of host protection against pulmonary Mtb infection and CD4 T cells are one important source of this molecule.


Assuntos
Ligante CD30/genética , Resistência à Doença/genética , Expressão Gênica , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Animais , Carga Bacteriana , Ligante CD30/deficiência , Ligante CD30/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Mycobacterium tuberculosis/fisiologia , Primatas , Células Th1/imunologia , Células Th1/metabolismo , Tuberculose/microbiologia
9.
PLoS Pathog ; 11(8): e1005040, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26252005

RESUMO

Cryptococcus neoformans is the most common cause of fungal meningoencephalitis in AIDS patients. Depletion of CD4 cells, such as occurs during advanced AIDS, is known to be a critical risk factor for developing cryptococcosis. However, the role of HIV-induced innate inflammation in susceptibility to cryptococcosis has not been evaluated. Thus, we sought to determine the role of Type I IFN induction in host defense against cryptococci by treatment of C. neoformans (H99) infected mice with poly-ICLC (pICLC), a dsRNA virus mimic. Unexpectedly, pICLC treatment greatly extended survival of infected mice and reduced fungal burdens in the brain. Protection from cryptococcosis by pICLC-induced Type I IFN was mediated by MDA5 rather than TLR3. PICLC treatment induced a large, rapid and sustained influx of neutrophils and Ly6Chigh monocytes into the lung while suppressing the development of eosinophilia. The pICLC-mediated protection against H99 was CD4 T cell dependent and analysis of CD4 T cell polyfunctionality showed a reduction in IL-5 producing CD4 T cells, marginal increases in Th1 cells and dramatic increases in RORγt+ Th17 cells in pICLC treated mice. Moreover, the protective effect of pICLC against H99 was diminished in IFNγ KO mice and by IL-17A neutralization with blocking mAbs. Furthermore, pICLC treatment also significantly extended survival of C. gattii infected mice with reduced fungal loads in the lungs. These data demonstrate that induction of type I IFN dramatically improves host resistance against the etiologic agents of cryptococcosis by beneficial alterations in both innate and adaptive immune responses.


Assuntos
Carboximetilcelulose Sódica/análogos & derivados , Indutores de Interferon/farmacologia , Interferon Tipo I/biossíntese , Meningite Criptocócica/imunologia , Poli I-C/farmacologia , Polilisina/análogos & derivados , Animais , Linfócitos T CD4-Positivos/imunologia , Carboximetilcelulose Sódica/farmacologia , Cryptococcus neoformans , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polilisina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA