RESUMO
Herein we discuss the clinical course and subsequent autopsy of a female infant with trisomy 21 with balanced Rastelli Type "C" complete atrioventricular septal defect (AVSD), tetralogy of Fallot and right aortic arch with mirror image branching pattern who underwent a palliative right modified Blalock-Taussig-Thomas shunt (mBTTS) for hypoxemia from progressive right ventricular outflow tract obstruction. The baby was found to have multiple concomitant pathologic findings not typically seen with this constellation of cardiac anatomy. Autopsy revealed significant abdominal adhesions with near-complete stenosis of the transverse colon. In addition, the infant was found to have significantly elongated villi within the small and large bowel and a relatively large collagenous polyp in the small bowel. The decedent also had an abnormal tracheal bronchus, characterized by an additional superior right-sided bronchus, which is an extremely rare abnormality. Her clinical course was complicated by severe pulmonary hypertensive arteriolar changes out of proportion to what would be typical for her age, trisomy 21 status, and degree of left to right intracardiac shunting. Furthermore, she had refractory anasarca and recurrent chylous pleural effusions without gross lymphatic abnormalities that may have been secondary to systemic capillary leak syndrome (SCLS) versus severe pulmonary hypertension. Due to the aforementioned findings, the family elected for comfort care and the baby expired shortly after extubation. Overall, the infant had multiple, rare coexisting congenital abnormalities that likely represents an extreme phenotype of trisomy 21 that has not been described in the literature to date.
RESUMO
SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function.
Assuntos
Dano ao DNA , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Neoplasias do Colo do Útero/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , DNA Helicases/deficiência , Feminino , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas Nucleares/deficiência , RNA Interferente Pequeno/genética , Fatores de Transcrição/deficiênciaRESUMO
Reduced intercellular communication via gap junctions is correlated with carcinogenesis. Gap junctional intercellular communication (GJIC), between normal human endometrial epithelial cells is enhanced when endometrial stromal cells were present in culture. This enhancement of GJIC between normal epithelial cells also occurs when they are cultured in medium conditioned by stromal cells. This observation indicated that a soluble compound (or compounds) produced and secreted by stromal cells mediates GJIC in epithelial cells. Previous studies have shown that endometrial stromal cells release prostaglandin E(2) (PGE(2)) and prostaglandin F(2α) (PGF(2α)) under physiological conditions. When we evaluated the response of normal endometrial epithelial cells to various concentrations of PGE(2,) we found enhanced GJIC with 1nM PGE(2). This is a smaller increase in GJIC than that induced by medium conditioned by stromal cells. When the extracellular concentration of PGE(2) was measured after incubation with stromal cells, it was found to be similar to the concentrations showing maximal GJIC between the normal epithelial cells. When indomethacin was used to inhibit prostaglandin synthesis by stromal cells, GJIC was reduced but not eliminated between normal endometrial epithelial cells. These observations suggest that although PGE(2) secreted by stromal cells is an important mediator of GJIC between the epithelial cells, it is not the sole mediator. Transformed endometrial epithelial cells did not demonstrate GJIC even in the presence of stromal cells. However, we were able to re-establish GJIC in transformed epithelial cells when we added PGE(2) to the cells. Our findings show that PGE(2) may serve as an intercellular mediator between stromal and epithelial cells that regulates GJIC in normal and malignant epithelial cells. This suggests that maintenance of GJIC by preserving or replacing PGE(2) secretion by endometrial stromal cells may have the potential to suppress carcinogenesis in endometrial epithelial cells.
Assuntos
Adenocarcinoma/tratamento farmacológico , Dinoprostona/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Junções Comunicantes/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem Celular Tumoral , Técnicas de Cocultura , Meios de Cultivo Condicionados , Feminino , Junções Comunicantes/fisiologia , Humanos , Células Estromais/citologia , Células Estromais/metabolismo , Útero/citologia , Útero/metabolismoRESUMO
BACKGROUND: Estrogen is the leading etiologic factor for endometrial cancer. Estrogen-induced proliferation of endometrial epithelial cells normally requires paracrine growth factors produced by stromal cells. Epidemiologic evidence indicates that dietary soy prevents endometrial cancer, and implicates the phytoestrogen genistein in this effect. However, results from previous studies are conflicting regarding the effects of genistein on hormone responsive cancers. METHODS: The effects of estrogen and genistein on proliferation of Ishikawa (IK) endometrial adenocarcinoma cells were examined in co-cultures of IK cells with endometrial stromal cells, recapitulating the heterotypic cell-to-cell interactions observed in vivo. The roles of estrogen receptor (ER)α and ERß were evaluated using ERα and ERß specific agonists. ER activation and cell proliferation in the IK epithelial cells were determined by alkaline phosphatase assay and Coulter counter enumeration, respectively. RESULTS: Both estrogen and genistein increased estrogen receptor-induced gene activity in IK cells over a range of concentrations. Estrogen alone but not genistein increased IK proliferation in co-cultures. When primed by estrogen treatment, increasing concentrations of genistein produced a biphasic effect on IK proliferation: nM concentrations inhibited estrogen-induced proliferation while µM concentrations increased proliferation. Studies with an ERß-specific agonist produced similar results. Genistein did not influence the effects of estrogen on IK proliferation in monoculture. CONCLUSIONS: Our study indicates that nutritionally relevant concentrations (nM) of genistein inhibit the proliferative effects of estrogen on endometrial adenocarcinoma cells presumably through activation of stromal cell ERß. We believe that sub-micromolar concentrations of genistein may represent a novel adjuvant for endometrial cancer treatment and prevention.
Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Endométrio/efeitos dos fármacos , Genisteína/farmacologia , Células Estromais/efeitos dos fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Fosfatase Alcalina/metabolismo , Western Blotting , Comunicação Celular , Técnicas de Cocultura , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Endométrio/citologia , Endométrio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Células Tumorais CultivadasRESUMO
In summary, recently developed technologies have begun to draw back the curtain of mystery that obscures some of the basic mechanisms of DNA replication at multiple levels. Studies using extended DNA and chromatin fiber techniques have proven valuable for identifying the location of origins of replication at specific genomic sites and determining their temporal order of replication, for identifying and quantifying sites of DNA damage and localizing chromatin proteins in relation to sites of DNA replication. The future potential of these methods include further discoveries in functional genomics and contributions to the elucidation of the histone code. Such studies could prove very valuable in studies of the mechanisms of cancer development, aging, and other processes of disordered genomic functioning.
Assuntos
Replicação do DNA , Fase S , Cromatina/metabolismo , Cromatina/ultraestrutura , DNA/química , DNA/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismoRESUMO
For DNA replication to occur, chromatin must be remodeled. Yet, we know very little about which proteins alter nucleosome occupancy at origins and replication forks and for what aspects of replication they are required. Here, we demonstrate that the BRG1 catalytic subunit of mammalian SWI/SNF-related complexes co-localizes with origin recognition complexes, GINS complexes, and proliferating cell nuclear antigen at sites of DNA replication on extended chromatin fibers. The specific pattern of BRG1 occupancy suggests it does not participate in origin selection but is involved in the firing of origins and the process of replication elongation. This latter function is confirmed by the fact that Brg1 mutant mouse embryos and RNAi knockdown cells exhibit a 50% reduction in replication fork progression rates, which is associated with decreased cell proliferation. This novel function of BRG1 is consistent with its requirement during embryogenesis and its role as a tumor suppressor to maintain genome stability and prevent cancer.
Assuntos
DNA Helicases/fisiologia , Replicação do DNA , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proliferação de Células , Cromatina/química , DNA Helicases/análise , DNA Helicases/genética , Proteínas de Ligação a DNA/análise , Desenvolvimento Embrionário , Células Eritroides/metabolismo , Células HeLa , Humanos , Camundongos , Mutação , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Fenótipo , Fatores de Transcrição/análise , Fatores de Transcrição/genéticaRESUMO
From in vitro studies, flap endonuclease 1 (FEN1) has been proposed to play a role in the long patch (LP) base excision repair (BER) subpathway. Yet the role of FEN1 in BER in the context of the living vertebrate cell has not been thoroughly explored. In the present study, we cloned a DT40 chicken cell line with a deletion in the FEN1 gene and found that these FEN1-deficient cells exhibited hypersensitivity to H(2)O(2). This oxidant produces genotoxic lesions that are repaired by BER, suggesting that the cells have a deficiency in BER affecting survival. In experiments with extracts from the isogenic FEN1 null and wild-type cell lines, the LP-BER activity of FEN1 null cells was deficient, whereas repair by the single-nucleotide BER subpathway was normal. Other consequences of the FEN1 deficiency were also evaluated. These results illustrate that FEN1 plays a role in LP-BER in higher eukaryotes, presumably by processing the flap-containing intermediates of BER.
Assuntos
Reparo do DNA/genética , DNA/genética , Endonucleases Flap/genética , Estresse Oxidativo/genética , Animais , Linhagem Celular , Galinhas , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Replicação do DNA/genética , Células Eucarióticas/metabolismo , Peróxido de Hidrogênio/toxicidade , Nucleotídeos/genética , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Vertebrados/genética , Vertebrados/metabolismoRESUMO
We have recently shown that replication forks pause near origins in normal human fibroblasts (NHF1-hTERT) but not glioblastoma T98G cells. This observation led us to question whether other differences in the replication program may exist between these cell types that may relate to their genetic integrity. To identify differences, we detected immunoflourescently the sequential incorporation of the nucleotide analogs IdU and CldU into replicating DNA at the start of every hour of a synchronized S phase. We then characterized the patterns of labeled replicating DNA tracks and quantified the percentages and lengths of the tracks found at these hourly intervals. From the directionality of labeling in single extended replicating DNA fibers, tracks were categorized as single bidirectional origins, unidirectional elongations, clusters of origins firing in tandem, or merging forks (terminations). Our analysis showed that the start of S phase is enriched in single bidirectional origins in NHF1-hTERT cells, followed by an increase in clustering during mid S phase and an increase in merging forks during late S phase. Early S phase in T98G cells also largely consisted of single bidirectional origin initiations; however, an increase in clustering was delayed until an hour later, and clusters were shorter in mid/late S phase than in NHF1-hTERT cells. The spike in merging forks also did not occur until an hour later in T98G cells. Our observations suggest models to explain the temporal replication of single and clustered origins, and suggest differences in the replication program in a normal and cancer cell line.
Assuntos
Replicação do DNA/fisiologia , DNA/metabolismo , Fibroblastos/metabolismo , Glioblastoma/metabolismo , Afidicolina/farmacologia , Linhagem Celular Tumoral , Replicação do DNA/genética , Glioblastoma/genética , Humanos , Idoxuridina/farmacologia , Modelos Biológicos , Origem de Replicação/genética , Fase S , Fatores de TempoRESUMO
During the S phase of the cell cycle, the entire genome is replicated. There is a high level of orderliness to this process through the temporally and topologically coordinated activation of many replication origins situated along chromosomes. We investigated the program of replication from origins initiating in early S phase by labeling synchronized normal human fibroblasts (NHF1) with nucleotide analogs for various pulse times and measuring labeled tracks in combed DNA fibers. Our analysis showed that replication forks progress 9-35 kilobases from newly initiated origins, followed by a pause in synthesis before replication resumes. Pausing was not observed near origins that initiated in the middle of S phase. No evidence for pausing near origins was found at the beginning of the S phase in glioblastoma T98G cells. Treatment with the S phase checkpoint inhibitor caffeine abrogated pausing in NHF1 cells in early S phase. This suggests that pausing may comprise a novel aspect of the intra-S phase checkpoint pathway or a related new early S checkpoint. Further, it is possible that the loss of this regulatory process in cancer cells such as T98G could be a contributing factor in the genetic instability that typifies cancers.
Assuntos
Replicação do DNA/fisiologia , DNA/metabolismo , Origem de Replicação/fisiologia , Fase S/fisiologia , Análise de Variância , Cafeína/farmacologia , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Fibroblastos , Citometria de Fluxo , Humanos , Origem de Replicação/genéticaRESUMO
In human endometrium, cell proliferation is regulated by ovarian steroids through heterotypic interactions between stromal and epithelial cells populating this tissue. The authors test the proliferative effects of tibolone and its metabolites using endometrial co-cultures that mimic the normal proliferative response to hormones. They found that both the Delta(4)-tibolone metabolite and the pure progestin ORG2058 counteract estradiol-driven epithelial cell proliferation. Surprisingly, the estrogen receptor binding 3-hydroxyl-metabolites of tibolone also counteracted estradiol-driven proliferation. Inhibition of proliferation by 3beta-OH-tibolone was abrogated by low doses of the progesterone receptor antagonist mifepristone. This suggests that 3beta-OH-tibolone is converted to a progestagenic metabolite. The authors found that the stromal cells used in the co-cultures express high levels of the ketosteroid dehydrogenase AKR1C2, which is able to oxidize 3beta-OH-tibolone back to tibolone. Thus, the unexpected progestagenic effect of 3beta-OH-tibolone in these co-cultures may be due to metabolic activity present in the stromal cells of the co-cultures.
Assuntos
Endométrio/citologia , Células Epiteliais/efeitos dos fármacos , Moduladores de Receptor Estrogênico/farmacologia , Norpregnenos/farmacologia , Células Estromais/efeitos dos fármacos , 20-Hidroxiesteroide Desidrogenases/genética , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Técnicas de Cocultura , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Estradiol/farmacologia , Feminino , Humanos , Pregnenodionas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/citologia , Células Estromais/metabolismoRESUMO
In higher eukaryotes there is a link between time of replication and transcription. It is generally accepted that genes that are actively transcribed are replicated in the first half of S phase while inactive genes replicate in the second half of S phase. We have recently reported that in normal human fibroblasts there are some functionally related genes that replicate at the same time in S phase. This had been previously reported for functionally related genes that are located in clusters, for example the alpha- and beta-globin complexes. We have shown, however, that this also occurs with some functionally related genes that are not organized in a cluster, but rather are distributed throughout the genome. For example, using GOstat analysis of data from our and other groups, we found an overrepresentation of genes involved in the apoptotic process among sequences that are replicated very early (approximately in the first hour of S phase) in both fibroblasts and lymphoblastoid cells. This finding leads us to question how and why the replication of genes in the apoptotic pathway is temporally organized in this manner. Here we discuss the possible explanations and implications of this observation.
Assuntos
Apoptose/fisiologia , Ciclo Celular/fisiologia , Replicação do DNA , DNA/metabolismo , Evolução Biológica , DNA/genética , Desenvolvimento Embrionário , Genoma , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismoAssuntos
Transformação Celular Neoplásica/genética , Replicação do DNA/fisiologia , Neoplasias/genética , Fase S/genética , Animais , Carcinógenos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Neoplasias/patologiaRESUMO
At any moment during S phase, regions of genomic DNA are in various stages of replication (i.e., initiation, chain elongation, and termination). These stages may be differentially inhibited after treatment with various carcinogens that damage DNA such as UV. We used visualization of active replication units in combed DNA fibers, in combination with quantitative analyses of the size distributions of nascent DNA, to evaluate the role of S-checkpoint proteins in UV-induced inhibition of DNA replication. When HeLa cells were exposed to a low fluence (1 J/m(2)) of 254 nm UV light (UVC), new initiation events were severely inhibited (5-6-fold reduction). A larger fluence of UVC (10 J/m(2)) resulted in stronger inhibition of the overall rate of DNA synthesis without decreasing further the frequency of replicon initiation events. Incubation of HeLa cells with caffeine and knockdown of ATR or Chk1 kinases reversed the UVC-induced inhibition of initiation of new replicons. These findings illustrate the concordance of data derived from different experimental approaches, thus strengthening the evidence that the activation of the intra-S checkpoint by UVC is dependent on the ATR and Chk1 kinases.
Assuntos
Dano ao DNA/genética , Replicação do DNA/genética , Células Epiteliais/metabolismo , Genes cdc/fisiologia , Fase S/genética , Raios Ultravioleta , Proteínas Mutadas de Ataxia Telangiectasia , Cafeína/farmacologia , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , DNA/biossíntese , DNA/genética , DNA/efeitos da radiação , Dano ao DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Regulação para Baixo/genética , Células Epiteliais/efeitos da radiação , Genes cdc/efeitos da radiação , Células HeLa , Humanos , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Fase S/efeitos da radiaçãoRESUMO
Lefty/Ebaf polypeptides, novel members of the TGF-beta superfamily, are involved in endometrial differentiation and embryo implantation. Recently, we showed that, during undisturbed estrous cycle, lefty is present in mouse uterine horn primarily in a precursor form. Here, we show that decidual differentiation of endometrial stroma leads to increased lefty (approximately 3.1- to 3.6-fold in vivo and 5- to 8-fold in vitro) and processing of its precursor primarily to its long form. This event occurs on d 5 of pregnancy, and is paralleled by proprotein convertase (PC)5/6 up-regulation (approximately 6-fold increase for PC5A and 3-fold increase for PC5B) in decidualized uterine horn, independent of embryo implantation. Among the known convertases, only PC5/6A processes lefty to its long form. Taken together, the findings show that decidualized differentiation of stroma, which is a prerequisite for embryo implantation, leads to processing of lefty by PC5/6A.
Assuntos
Decídua/fisiologia , Endométrio/citologia , Pró-Proteína Convertase 5/metabolismo , Processamento de Proteína Pós-Traducional , Células Estromais/citologia , Fator de Crescimento Transformador beta/genética , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Fatores de Determinação Direita-Esquerda , Camundongos , GravidezRESUMO
In the human endometrium, stromal cells mediate the proliferative response of epithelial cells to the steroid hormones estrogen and progesterone. These stromal-epithelial interactions are readily studied in vitro by coculture of both cell types. A major impediment to such studies is the rapid senescence of normal stromal cells. To circumvent this problem, we tested whether human endometrial stromal cells immortalized by expressing a transduced human telomerase reverse transcriptase (TERT) subunit retained the ability to mediate hormonal control of epithelial proliferation in the coculture assay. We found that the telomerized stromal cells were very similar to the parental strain from which they were derived according to criteria of proliferation, karyotype, cellular localization of cytoskeletal markers and nuclear staining, and basal gene expression based on microarray analysis. We also showed that expression of estrogen and progesterone receptors, as assessed by immunodetection, was similar in both telomerized and parental stromal cells. Importantly, the telomerized stromal cells were shown in coculture assay to be as effective as normal stromal cells in regulating the proliferation of endometrial epithelial cells in response to estrogen or progesterone. The availability of these long-lived stromal cells may advance studies addressing the mechanistic, regulatory, and cell structural basis of stromal-epithelial interactions and hormonal responses in normal, preneoplastic, and neoplastic human endometrial tissue.
Assuntos
Proteínas de Ligação a DNA/biossíntese , Endométrio/enzimologia , Receptor alfa de Estrogênio/biossíntese , Receptor beta de Estrogênio/biossíntese , Receptores de Progesterona/biossíntese , Telomerase/biossíntese , Western Blotting , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteínas de Ligação a DNA/genética , Endométrio/citologia , Endométrio/fisiologia , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Células Epiteliais/fisiologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Feminino , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Progesterona/farmacologia , Prolactina/genética , Prolactina/fisiologia , RNA/química , RNA/genética , Receptores de Progesterona/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/citologia , Células Estromais/enzimologia , Células Estromais/fisiologia , Telomerase/genética , Transdução GenéticaRESUMO
Endometrial cancer is characterized by alterations in the stromal cells and the supporting extracellular matrix in addition to the intrinsic alterations of the malignant epithelial cells. We have developed a cell culture model that demonstrates the role of stromal cells in the regulation of proliferation, hormone responsiveness, and differentiation of an endometrial adenocarcinoma cell line (Ishikawa). Conditioned medium (CM) was collected from normal primary human endometrial stromal cells grown on plastic or within the basement membrane extract, Matrigel. The CM produced by stromal cells cultured in contact with Matrigel markedly inhibited Ishikawa cell proliferation compared with CM from stromal cells cultured on plastic. Ishikawa cell proliferation varied with steroid hormone treatment in the presence of CM from stromal cells embedded in Matrigel. When the Ishikawa cells were placed in coculture in contact with stromal cells in Matrigel, production of a differentiated epithelial secretory product, glycodelin, was induced. Gene expression of stromal cell hormone receptors, growth factors, and integrins was analyzed by reverse transcription-PCR in the presence of Matrigel to determine the potential factors involved in stromal regulatory function. These combined studies imply that the phenotype of the Ishikawa cells can be induced to differentiate to more closely resemble normal endometrial epithelium by reintroduction of stromal factors and appropriate extracellular matrix. Additionally, the study shows that basement membrane proteins influence the regulatory function of stromal cells as they mediate epithelial cell growth.