Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1233, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057566

RESUMO

A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.


Assuntos
Galinhas , Leptina , Animais , Galinhas/genética , Leptina/genética , Genoma , Genômica , Cromossomos
2.
J Immunol ; 210(5): 668-680, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695776

RESUMO

The chicken MHC is known to confer decisive resistance or susceptibility to various economically important pathogens, including the iconic oncogenic herpesvirus that causes Marek's disease (MD). Only one classical class I gene, BF2, is expressed at a high level in chickens, so it was relatively easy to discern a hierarchy from well-expressed thermostable fastidious specialist alleles to promiscuous generalist alleles that are less stable and expressed less on the cell surface. The class I molecule BF2*1901 is better expressed and more thermostable than the closely related BF2*1501, but the peptide motif was not simpler as expected. In this study, we confirm for newly developed chicken lines that the chicken MHC haplotype B15 confers resistance to MD compared with B19. Using gas phase sequencing and immunopeptidomics, we find that BF2*1901 binds a greater variety of amino acids in some anchor positions than does BF2*1501. However, by x-ray crystallography, we find that the peptide-binding groove of BF2*1901 is narrower and shallower. Although the self-peptides that bound to BF2*1901 may appear more various than those of BF2*1501, the structures show that the wider and deeper peptide-binding groove of BF2*1501 allows stronger binding and thus more peptides overall, correlating with the expected hierarchies for expression level, thermostability, and MD resistance. Our study provides a reasonable explanation for greater promiscuity for BF2*1501 compared with BF2*1901, corresponding to the difference in resistance to MD.


Assuntos
Doença de Marek , Animais , Alelos , Aminoácidos , Membrana Celular , Galinhas , Doença de Marek/genética , Antígenos de Histocompatibilidade Classe I/imunologia
3.
Front Immunol ; 13: 886672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967451

RESUMO

The functions of a wide variety of molecules with structures similar to the classical class I and class II molecules encoded by the major histocompatibility complex (MHC) have been studied by biochemical and structural studies over decades, with many aspects for humans and mice now enshrined in textbooks as dogma. However, there is much variation of the MHC and MHC molecules among the other jawed vertebrates, understood in the most detail for the domestic chicken. Among the many unexpected features in chickens is the co-evolution between polymorphic TAP and tapasin genes with a dominantly-expressed class I gene based on a different genomic arrangement compared to typical mammals. Another important discovery was the hierarchy of class I alleles for a suite of properties including size of peptide repertoire, stability and cell surface expression level, which is also found in humans although not as extreme, and which led to the concept of generalists and specialists in response to infectious pathogens. Structural studies of chicken class I molecules have provided molecular explanations for the differences in peptide binding compared to typical mammals. These unexpected phenomena include the stringent binding with three anchor residues and acidic residues at the peptide C-terminus for fastidious alleles, and the remodelling binding sites, relaxed binding of anchor residues in broad hydrophobic pockets and extension at the peptide C-terminus for promiscuous alleles. The first few studies for chicken class II molecules have already uncovered unanticipated structural features, including an allele that binds peptides by a decamer core. It seems likely that the understanding of how MHC molecules bind and present peptides to lymphocytes will broaden considerably with further unexpected discoveries through biochemical and structural studies for chickens and other non-mammalian vertebrates.


Assuntos
Galinhas , Complexo Principal de Histocompatibilidade , Animais , Galinhas/genética , Antígenos de Histocompatibilidade , Humanos , Sistema Imunitário , Complexo Principal de Histocompatibilidade/genética , Mamíferos , Camundongos , Peptídeos , Vertebrados
4.
Front Immunol ; 13: 908305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693787

RESUMO

The major histocompatibility complex (MHC) is crucial for appropriate immune responses against invading pathogens. Chickens possess a single predominantly-expressed class I molecule with strong associations between disease resistance and MHC haplotype. For Marek's disease virus (MDV) infections of chickens, the MHC haplotype is one of the major determinants of genetic resistance and susceptibility. VALO specific pathogen free (SPF) chickens are widely used in biomedical research and vaccine production. While valuable findings originate from MDV infections of VALO SPF chickens, their MHC haplotypes and associated disease resistance remained elusive. In this study, we used several typing systems to show that VALO SPF chickens possess MHC haplotypes that include B9, B9:02, B15, B19 and B21 at various frequencies. Moreover, we associate the MHC haplotypes to MDV-induced disease and lymphoma formation and found that B15 homozygotes had the lowest tumor incidence while B21 homozygotes had the lowest number of organs with tumors. Finally, we found transmission at variable levels to all contact birds except B15/B21 heterozygotes. These data have immediate implications for the use of VALO SPF chickens and eggs in the life sciences and add another piece to the puzzle of the chicken MHC complex and its role in infections with this oncogenic herpesvirus.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Animais , Carcinogênese/genética , Galinhas/genética , Resistência à Doença/genética , Haplótipos , Herpesvirus Galináceo 2/genética , Antígenos de Histocompatibilidade , Complexo Principal de Histocompatibilidade/genética
5.
Curr Opin Immunol ; 77: 102218, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35687979

RESUMO

The major histocompatibility complex (MHC) of mammals encodes highly polymorphic classical class I and class II molecules with crucial roles in immune responses, as well as various nonclassical molecules encoded by the MHC and elsewhere in the genome that have a variety of functions. These MHC molecules are supported by antigen processing and peptide loading pathways which are well-understood in mammals. This review considers what has been learned about the MHC, MHC molecules and the supporting pathways in non-mammalian jawed vertebrates. From the initial understanding from work with the chicken MHC, a great deal of diversity in the structure and function has been found. Are there underlying principles?


Assuntos
Apresentação de Antígeno , Complexo Principal de Histocompatibilidade , Animais , Antígenos de Histocompatibilidade , Antígenos de Histocompatibilidade Classe I , Mamíferos/genética , Peptídeos , Vertebrados
6.
PLoS Biol ; 19(4): e3001057, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901176

RESUMO

Viral diseases pose major threats to humans and other animals, including the billions of chickens that are an important food source as well as a public health concern due to zoonotic pathogens. Unlike humans and other typical mammals, the major histocompatibility complex (MHC) of chickens can confer decisive resistance or susceptibility to many viral diseases. An iconic example is Marek's disease, caused by an oncogenic herpesvirus with over 100 genes. Classical MHC class I and class II molecules present antigenic peptides to T lymphocytes, and it has been hard to understand how such MHC molecules could be involved in susceptibility to Marek's disease, given the potential number of peptides from over 100 genes. We used a new in vitro infection system and immunopeptidomics to determine peptide motifs for the 2 class II molecules expressed by the MHC haplotype B2, which is known to confer resistance to Marek's disease. Surprisingly, we found that the vast majority of viral peptide epitopes presented by chicken class II molecules arise from only 4 viral genes, nearly all having the peptide motif for BL2*02, the dominantly expressed class II molecule in chickens. We expressed BL2*02 linked to several Marek's disease virus (MDV) peptides and determined one X-ray crystal structure, showing how a single small amino acid in the binding site causes a crinkle in the peptide, leading to a core binding peptide of 10 amino acids, compared to the 9 amino acids in all other reported class II molecules. The limited number of potential T cell epitopes from such a complex virus can explain the differential MHC-determined resistance to MDV, but raises questions of mechanism and opportunities for vaccine targets in this important food species, as well as providing a basis for understanding class II molecules in other species including humans.


Assuntos
Galinhas/imunologia , Herpesvirus Galináceo 2/imunologia , Antígenos de Histocompatibilidade Classe II , Doença de Marek/imunologia , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Bolsa de Fabricius/imunologia , Células Cultivadas , Galinhas/genética , Galinhas/virologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Haplótipos , Herpesvirus Galináceo 2/química , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Epitopos Imunodominantes/metabolismo , Doença de Marek/genética , Doença de Marek/virologia , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia
8.
Immunogenetics ; 71(10): 647-663, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31761978

RESUMO

The classical class I and class II molecules of the major histocompatibility complex (MHC) play crucial roles in immune responses to infectious pathogens and vaccines as well as being important for autoimmunity, allergy, cancer and reproduction. These classical MHC genes are the most polymorphic known, with roughly 10,000 alleles in humans. In chickens, the MHC (also known as the BF-BL region) determines decisive resistance and susceptibility to infectious pathogens, but relatively few MHC alleles and haplotypes have been described in any detail. We describe a typing protocol for classical chicken class I (BF) and class II B (BLB) genes based on a hybridization method called reference strand-mediated conformational analysis (RSCA). We optimize the various steps, validate the analysis using well-characterized chicken MHC haplotypes, apply the system to type some experimental lines and discover a new chicken class I allele. This work establishes a basis for typing the MHC genes of chickens worldwide and provides an opportunity to correlate with microsatellite and with single nucleotide polymorphism (SNP) typing for approaches involving imputation.


Assuntos
Genes MHC da Classe II/genética , Genes MHC Classe I/genética , Hibridização de Ácido Nucleico/métodos , Polimorfismo Genético , Análise de Sequência de DNA/normas , Animais , Galinhas , Polimorfismo Conformacional de Fita Simples , Padrões de Referência , Análise de Sequência de DNA/métodos
9.
J Immunol ; 201(10): 3084-3095, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30341185

RESUMO

MHC molecules are found in all jawed vertebrates and are known to present peptides to T lymphocytes. In mammals, peptides can hang out either end of the peptide-binding groove of classical class II molecules, whereas the N and C termini of peptides are typically tightly bound to specific pockets in classical class I molecules. The chicken MHC, like many nonmammalian vertebrates, has a single dominantly expressed classical class I molecule encoded by the BF2 locus. We determined the structures of BF2*1201 bound to two peptides and found that the C terminus of one peptide hangs outside of the groove with a conformation much like the peptides bound to class II molecules. We found that BF2*1201 binds many peptides that hang out of the groove at the C terminus, and the sequences and structures of this MHC class I allele were determined to investigate the basis for this phenomenon. The classical class I molecules of mammals have a nearly invariant Tyr (Tyr84 in humans) that coordinates the peptide C terminus, but all classical class I molecules outside of mammals have an Arg in that position in common with mammalian class II molecules. We find that this invariant Arg residue switches conformation to allow peptides to hang out of the groove of BF2*1201, suggesting that this phenomenon is common in chickens and other nonmammalian vertebrates, perhaps allowing the single dominantly expressed class I molecule to bind a larger repertoire of peptides.


Assuntos
Arginina/química , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe I/química , Animais , Arginina/imunologia , Galinhas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Peptídeos/química , Peptídeos/imunologia
10.
Elife ; 72018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30103855

RESUMO

Devil Facial Tumour 2 (DFT2) is a recently discovered contagious cancer circulating in the Tasmanian devil (Sarcophilus harrisii), a species which already harbours a more widespread contagious cancer, Devil Facial Tumour 1 (DFT1). Here we show that in contrast to DFT1, DFT2 cells express major histocompatibility complex (MHC) class I molecules, demonstrating that loss of MHC is not necessary for the emergence of a contagious cancer. However, the most highly expressed MHC class I alleles in DFT2 cells are common among host devils or non-polymorphic, reducing immunogenicity in a population sharing these alleles. In parallel, MHC class I loss is emerging in vivo, thus DFT2 may be mimicking the evolutionary trajectory of DFT1. Based on these results we propose that contagious cancers may exploit partial histocompatibility between the tumour and host, but that loss of allogeneic antigens could facilitate widespread transmission of DFT2.


Assuntos
Evolução Biológica , Neoplasias Faciais/genética , Antígenos de Histocompatibilidade Classe I/genética , Alelos , Animais , Neoplasias Faciais/fisiopatologia , Marsupiais/genética , Marsupiais/fisiologia
11.
Annu Rev Immunol ; 36: 383-409, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29677478

RESUMO

The major histocompatibility complex (MHC) is a large genetic region with many genes, including the highly polymorphic classical class I and II genes that play crucial roles in adaptive as well as innate immune responses. The organization of the MHC varies enormously among jawed vertebrates, but class I and II genes have not been found in other animals. How did the MHC arise, and are there underlying principles that can help us to understand the evolution of the MHC? This review considers what it means to be an MHC and the potential importance of genome-wide duplication, gene linkage, and gene coevolution for the emergence and evolution of an adaptive immune system. Then it considers what the original antigen-specific receptor and MHC molecule might have looked like, how peptide binding might have evolved, and finally the importance of adaptive immunity in general.


Assuntos
Imunidade Adaptativa , Evolução Biológica , Complexo Principal de Histocompatibilidade/imunologia , Imunidade Adaptativa/genética , Animais , Duplicação Gênica , Estudo de Associação Genômica Ampla , Humanos , Complexo Principal de Histocompatibilidade/genética , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Vertebrados
12.
Curr Opin Immunol ; 46: 23-29, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28433952

RESUMO

Almost all knowledge about the structure and function of MHC class II molecules outside of mammals comes from work with chickens. Most of the genes implicated in the class II system are present in chickens, so it is likely that the machinery of antigen processing and peptide-loading is similar to mammals. However, there is only one isotype (lineage) of classical class II genes, with one monomorphic DR-like BLA gene and two polymorphic BLB genes, located near one DMA and two DMB genes. The DMB2 and BLB2 genes are widely expressed at high levels, whereas the DMB1 and BLB1 genes are only expressed at highest levels in spleen and intestine, suggesting the possibility of two class II systems in chickens.


Assuntos
Galinhas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade , Alelos , Animais , Apresentação de Antígeno/imunologia , Galinhas/genética , Epitopos/genética , Epitopos/imunologia , Evolução Molecular , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Mamíferos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Peptídeos/genética , Peptídeos/imunologia , Polimorfismo Genético
13.
Sci Rep ; 7: 43827, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276463

RESUMO

Devil facial tumour disease (DFTD) is a transmissible cancer devastating the Tasmanian devil (Sarcophilus harrisii) population. The cancer cell is the 'infectious' agent transmitted as an allograft by biting. Animals usually die within a few months with no evidence of antibody or immune cell responses against the DFTD allograft. This lack of anti-tumour immunity is attributed to an absence of cell surface major histocompatibility complex (MHC)-I molecule expression. While the endangerment of the devil population precludes experimentation on large experimental groups, those examined in our study indicated that immunisation and immunotherapy with DFTD cells expressing surface MHC-I corresponded with effective anti-tumour responses. Tumour engraftment did not occur in one of the five immunised Tasmanian devils, and regression followed therapy of experimentally induced DFTD tumours in three Tasmanian devils. Regression correlated with immune cell infiltration and antibody responses against DFTD cells. These data support the concept that immunisation of devils with DFTD cancer cells can successfully induce humoral responses against DFTD and trigger immune-mediated regression of established tumours. Our findings support the feasibility of a protective DFTD vaccine and ultimately the preservation of the species.


Assuntos
Neoplasias Faciais/imunologia , Imunização/métodos , Imunoterapia/métodos , Marsupiais/imunologia , Animais , Formação de Anticorpos/imunologia , Neoplasias Faciais/terapia , Neoplasias Faciais/veterinária , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Humoral/imunologia , Masculino , Resultado do Tratamento
14.
Open Biol ; 6(9)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27628321

RESUMO

Mammalian butyrophilins have various important functions, one for lipid binding but others as ligands for co-inhibition of αß T cells or for stimulation of γδ T cells in the immune system. The chicken BG homologues are dimers, with extracellular immunoglobulin variable (V) domains joined by cysteines in the loop equivalent to complementarity-determining region 1 (CDR1). BG genes are found in three genomic locations: BG0 on chromosome 2, BG1 in the classical MHC (the BF-BL region) and many BG genes in the BG region just outside the MHC. Here, we show that BG0 is virtually monomorphic, suggesting housekeeping function(s) consonant with the ubiquitous tissue distribution. BG1 has allelic polymorphism but minimal sequence diversity, with the few polymorphic residues at the interface of the two V domains, suggesting that BG1 is recognized by receptors in a conserved fashion. Any phenotypic variation should be due to the intracellular region, with differential exon usage between alleles. BG genes in the BG region can generate diversity by exchange of sequence cassettes located in loops equivalent to CDR1 and CDR2, consonant with recognition of many ligands or antigens for immune defence. Unlike the mammalian butyrophilins, there are at least three modes by which BG genes evolve.


Assuntos
Proteínas Aviárias/genética , Proteínas Aviárias/fisiologia , Butirofilinas/genética , Butirofilinas/fisiologia , DNA Complementar/metabolismo , Variação Genética , Alelos , Processamento Alternativo , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Sequência de Bases , Butirofilinas/química , Galinhas , Cromossomos/genética , DNA Complementar/genética , Evolução Molecular , Éxons , Modelos Químicos , Glicoproteína Mielina-Oligodendrócito/química , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/fisiologia , RNA/genética , RNA/metabolismo
15.
Proc Natl Acad Sci U S A ; 113(3): 692-7, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26699458

RESUMO

The chicken major histocompatibility complex (MHC) has strong genetic associations with resistance and susceptibility to certain infectious pathogens. The cell surface expression level of MHC class I molecules varies as much as 10-fold between chicken haplotypes and is inversely correlated with diversity of peptide repertoire and with resistance to Marek's disease caused by an oncogenic herpesvirus. Here we show that the average thermostability of class I molecules isolated from cells also varies, being higher for high-expressing MHC haplotypes. However, we find roughly the same amount of class I protein synthesized by high- and low-expressing MHC haplotypes, with movement to the cell surface responsible for the difference in expression. Previous data show that chicken TAP genes have high allelic polymorphism, with peptide translocation specific for each MHC haplotype. Here we use assembly assays with peptide libraries to show that high-expressing B15 class I molecules can bind a much wider variety of peptides than are found on the cell surface, with the B15 TAPs restricting the peptides available. In contrast, the translocation specificity of TAPs from the low-expressing B21 haplotype is even more permissive than the promiscuous binding shown by the dominantly expressed class I molecule. B15/B21 heterozygote cells show much greater expression of B15 class I molecules than B15/B15 homozygote cells, presumably as a result of receiving additional peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary in several correlated attributes, with the most obvious candidate linking all these properties being molecular interactions within the peptide-loading complex (PLC).


Assuntos
Membrana Celular/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Temperatura , Sequência de Aminoácidos , Animais , Transporte Biológico , Galinhas , Epitopos/metabolismo , Eritrócitos/metabolismo , Haplótipos , Heterozigoto , Homozigoto , Dados de Sequência Molecular , Peptídeos/química , Estabilidade Proteica , Especificidade por Substrato , Microglobulina beta-2/metabolismo
16.
Elife ; 4: e05345, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25860507

RESUMO

Highly polymorphic major histocompatibility complex (MHC) molecules are at the heart of adaptive immune responses, playing crucial roles in many kinds of disease and in vaccination. We report that breadth of peptide presentation and level of cell surface expression of class I molecules are inversely correlated in both chickens and humans. This relationship correlates with protective responses against infectious pathogens including Marek's disease virus leading to lethal tumours in chickens and human immunodeficiency virus infection progressing to AIDS in humans. We propose that differences in peptide binding repertoire define two groups of MHC class I molecules strategically evolved as generalists and specialists for different modes of pathogen resistance. We suggest that differences in cell surface expression level ensure the development of optimal peripheral T cell responses. The inverse relationship of peptide repertoire and expression is evidently a fundamental property of MHC molecules, with ramifications extending beyond immunology and medicine to evolutionary biology and conservation.


Assuntos
Imunidade Adaptativa , Herpesvirus Galináceo 2/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Doença de Marek/imunologia , Peptídeos/imunologia , Síndrome da Imunodeficiência Adquirida/imunologia , Síndrome da Imunodeficiência Adquirida/virologia , Alelos , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Sítios de Ligação , Linhagem Celular , Galinhas , Cristalografia por Raios X , Regulação da Expressão Gênica , HIV-1/imunologia , Haplótipos , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Doença de Marek/virologia , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
17.
Immunology ; 144(1): 11-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25187312

RESUMO

Naturally transmissible tumours can emerge when a tumour cell gains the ability to pass as an infectious allograft between individuals. The ability of these tumours to colonize a new host and to cross histocompatibility barriers contradicts our understanding of the vertebrate immune response to allografts. Two naturally occurring contagious cancers are currently active in the animal kingdom, canine transmissible venereal tumour (CTVT), which spreads among dogs, and devil facial tumour disease (DFTD), among Tasmanian devils. CTVT are generally not fatal as a tumour-specific host immune response controls or clears the tumours after transmission and a period of growth. In contrast, the growth of DFTD tumours is not controlled by the Tasmanian devil's immune system and the disease causes close to 100% mortality, severely impacting the devil population. To avoid the immune response of the host both DFTD and CTVT use a variety of immune escape strategies that have similarities to many single organism tumours, including MHC loss and the expression of immunosuppressive cytokines. However, both tumours appear to have a complex interaction with the immune system of their respective host, which has evolved over the relatively long life of these tumours. The Tasmanian devil is struggling to survive with the burden of this disease and it is only with an understanding of how DFTD passes between individuals that a vaccine might be developed. Further, an understanding of how these tumours achieve natural transmissibility should provide insights into general mechanisms of immune escape that emerge during tumour evolution.


Assuntos
Doenças do Cão/imunologia , Evasão Tumoral , Tumores Venéreos Veterinários/imunologia , Animais , Doenças do Cão/patologia , Cães , Tumores Venéreos Veterinários/patologia
18.
Oncoimmunology ; 2(8): e25235, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24083079

RESUMO

The devil facial tumor disease (DFTD) is a contagious cancer that has recently emerged among Tasmanian devils, rapidly decimating the population. We have recently discovered that DFTD cells lose the expression MHC molecules on the cell surface, explaining how this tumor avoids recognition by host CD8+ T cells.

19.
Immunogenetics ; 65(8): 609-18, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23644721

RESUMO

In contrast to typical mammals, the chicken MHC (the BF-BL region of the B locus) has strong genetic associations with resistance and susceptibility to infectious pathogens as well as responses to vaccines. We have shown that the chicken MHC encodes a single dominantly expressed class I molecule whose peptide-binding motifs can determine resistance to viral pathogens, such as Rous sarcoma virus and Marek's disease virus. In this report, we examine the response to a molecular defined vaccine, fp-IBD1, which consists of a fowlpox virus vector carrying the VP2 gene of infectious bursal disease virus (IBDV) fused with ß-galactosidase. We vaccinated parental lines and two backcross families with fp-IBD1, challenged with the virulent IBDV strain F52/70, and measured damage to the bursa. We found that the MHC haplotype B15 from line 15I confers no protection, whereas B2 from line 61 and B12 from line C determine protection, although another locus from line 61 was also important. Using our peptide motifs, we found that many more peptides from VP2 were predicted to bind to the dominantly expressed class I molecule BF2*1201 than BF2*1501. Moreover, most of the peptides predicted to bind BF2*1201 did in fact bind, while none bound BF2*1501. Using peptide vaccination, we identified one B12 peptide that conferred protection to challenge, as assessed by bursal damage and viremia. Thus, we show the strong genetic association of the chicken MHC to a T cell vaccine can be explained by peptide presentation by the single dominantly expressed class I molecule.


Assuntos
Infecções por Birnaviridae/prevenção & controle , Genes MHC Classe I/imunologia , Vírus da Doença Infecciosa da Bursa/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/imunologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/imunologia , Animais , Apresentação de Antígeno , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Galinhas , Vírus da Varíola das Aves Domésticas/genética , Vírus da Varíola das Aves Domésticas/metabolismo , Genes MHC Classe I/genética , Genes Virais , Loci Gênicos , Predisposição Genética para Doença/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Endogamia , Peptídeos/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vacinas Sintéticas/imunologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(13): 5103-8, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479617

RESUMO

Contagious cancers that pass between individuals as an infectious cell line are highly unusual pathogens. Devil facial tumor disease (DFTD) is one such contagious cancer that emerged 16 y ago and is driving the Tasmanian devil to extinction. As both a pathogen and an allograft, DFTD cells should be rejected by the host-immune response, yet DFTD causes 100% mortality among infected devils with no apparent rejection of tumor cells. Why DFTD cells are not rejected has been a question of considerable confusion. Here, we show that DFTD cells do not express cell surface MHC molecules in vitro or in vivo, due to down-regulation of genes essential to the antigen-processing pathway, such as ß2-microglobulin and transporters associated with antigen processing. Loss of gene expression is not due to structural mutations, but to regulatory changes including epigenetic deacetylation of histones. Consequently, MHC class I molecules can be restored to the surface of DFTD cells in vitro by using recombinant devil IFN-γ, which is associated with up-regulation of the MHC class II transactivator, a key transcription factor with deacetylase activity. Further, expression of MHC class I molecules by DFTD cells can occur in vivo during lymphocyte infiltration. These results explain why T cells do not target DFTD cells. We propose that MHC-positive or epigenetically modified DFTD cells may provide a vaccine to DFTD. In addition, we suggest that down-regulation of MHC molecules using regulatory mechanisms allows evolvability of transmissible cancers and could affect the evolutionary trajectory of DFTD.


Assuntos
Espécies em Perigo de Extinção , Epigênese Genética/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade/imunologia , Marsupiais/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/veterinária , Evasão Tumoral , Animais , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Interferon gama/imunologia , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA