Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Mol Ther ; 32(2): 325-339, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38053332

RESUMO

Upon viral infection of the liver, CD8+ T cell responses may be triggered despite the immune suppressive properties that manifest in this organ. We sought to identify pathways that activate responses to a neoantigen expressed in hepatocytes, using adeno-associated viral (AAV) gene transfer. It was previously established that cooperation between plasmacytoid dendritic cells (pDCs), which sense AAV genomes by Toll-like receptor 9 (TLR9), and conventional DCs promotes cross-priming of capsid-specific CD8+ T cells. Surprisingly, we find local initiation of a CD8+ T cell response against antigen expressed in ∼20% of murine hepatocytes, independent of TLR9 or type I interferons and instead relying on IL-1 receptor 1-MyD88 signaling. Both IL-1α and IL-1ß contribute to this response, which can be blunted by IL-1 blockade. Upon AAV administration, IL-1-producing pDCs infiltrate the liver and co-cluster with XCR1+ DCs, CD8+ T cells, and Kupffer cells. Analogous events were observed following coagulation factor VIII gene transfer in hemophilia A mice. Therefore, pDCs have alternative means of promoting anti-viral T cell responses and participate in intrahepatic immune cell networks similar to those that form in lymphoid organs. Combined TLR9 and IL-1 blockade may broadly prevent CD8+ T responses against AAV capsid and transgene product.


Assuntos
Linfócitos T CD8-Positivos , Fator 88 de Diferenciação Mieloide , Animais , Camundongos , Proteínas do Capsídeo , Células Dendríticas , Interleucina-1/metabolismo , Fígado/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
2.
J Thromb Haemost ; 21(12): 3329-3341, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839613

RESUMO

Remarkably, it has been 40 years since the isolation of the 2 genes involved in hemophilia A (HA) and hemophilia B (HB), encoding clotting factor (F) VIII (FVIII) and FIX, respectively. Over the years, these advances led to the development of purified recombinant protein factors that are free of contaminating viruses from human pooled plasma for hemophilia treatments, reducing the morbidity and mortality previously associated with human plasma-derived clotting factors. These discoveries also paved the way for modified factors that have increased plasma half-lives. Importantly, more recent advances have led to the development and Food and Drug Administration approval of a hepatocyte-targeted, adeno-associated viral vector-mediated gene transfer approach for HA and HB. However, major concerns regarding the durability and safety of HA gene therapy remain to be resolved. Compared with FIX, FVIII is a much larger protein that is prone to misfolding and aggregation in the endoplasmic reticulum and is poorly secreted by the mammalian cells. Due to the constraint of the packaging capacity of adeno-associated viral vector, B-domain deleted FVIII rather than the full-length protein is used for HA gene therapy. Like full-length FVIII, B-domain deleted FVIII misfolds and is inefficiently secreted. Its expression in hepatocytes activates the cellular unfolded protein response, which is deleterious for hepatocyte function and survival and has the potential to drive hepatocellular carcinoma. This review is focused on our current understanding of factors limiting FVIII secretion and the potential pathophysiological consequences upon expression in hepatocytes.


Assuntos
Hemofilia A , Hemofilia B , Animais , Humanos , Fator VIII/metabolismo , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia A/metabolismo , Fatores de Coagulação Sanguínea/genética , Terapia Genética , Hemofilia B/terapia , Hemofilia B/tratamento farmacológico , Mamíferos/genética , Mamíferos/metabolismo
3.
J Neuroinflammation ; 20(1): 145, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344842

RESUMO

Cellular adaptation to low oxygen tension triggers primitive pathways that ensure proper cell function. Conditions of hypoxia and low glucose are characteristic of injured tissues and hence successive waves of inflammatory cells must be suited to function under low oxygen tension and metabolic stress. While Hypoxia-Inducible Factor (HIF)-1α has been shown to be essential for the inflammatory response of myeloid cells by regulating the metabolic switch to glycolysis, less is known about how HIF1α is triggered in inflammation. Here, we demonstrate that cells of the innate immune system require activity of the inositol-requiring enzyme 1α (IRE1α/XBP1) axis in order to initiate HIF1α-dependent production of cytokines such as IL1ß, IL6 and VEGF-A. Knockout of either HIF1α or IRE1α in myeloid cells ameliorates vascular phenotypes in a model of retinal pathological angiogenesis driven by sterile inflammation. Thus, pathways associated with ER stress, in partnership with HIF1α, may co-regulate immune adaptation to low oxygen.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Hipóxia , Oxigênio/metabolismo , Células Mieloides/metabolismo , Inflamação/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
4.
J Hepatol ; 79(2): 362-377, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36996941

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC), a leading cause of cancer-related death, is associated with viral hepatitis, non-alcoholic steatohepatitis (NASH), and alcohol-related steatohepatitis, all of which trigger endoplasmic reticulum (ER) stress, hepatocyte death, inflammation, and compensatory proliferation. Using ER stress-prone MUP-uPA mice, we established that ER stress and hypernutrition cooperate to cause NASH and HCC, but the contribution of individual stress effectors, such as activating transcription factor 4 (ATF4), to HCC and their underlying mechanisms of action remained unknown. METHODS: Hepatocyte-specific ATF4-deficient MUP-uPA mice (MUP-uPA/Atf4Δhep) and control MUP-uPA/Atf4F/F mice were fed a high-fat diet to induce NASH-related HCC, and Atf4F/F and Atf4Δhep mice were injected with diethylnitrosamine to model carcinogen-induced HCC. Histological, biochemical, and RNA-sequencing analyses were performed to identify and define the role of ATF4-induced solute carrier family 7a member 11 (SLC7A11) expression in hepatocarcinogenesis. Reconstitution of SLC7A11 in ATF4-deficient primary hepatocytes and mouse livers was used to study its effects on ferroptosis and HCC development. RESULTS: Hepatocyte ATF4 ablation inhibited hepatic steatosis, but increased susceptibility to ferroptosis, resulting in accelerated HCC development. Although ATF4 activates numerous genes, ferroptosis susceptibility and hepatocarcinogenesis were reversed by ectopic expression of a single ATF4 target, Slc7a11, coding for a subunit of the cystine/glutamate antiporter xCT, which is needed for glutathione synthesis. A ferroptosis inhibitor also reduced liver damage and inflammation. ATF4 and SLC7A11 amounts were positively correlated in human HCC and livers of patients with NASH. CONCLUSIONS: Despite ATF4 being upregulated in established HCC, it serves an important protective function in normal hepatocytes. By maintaining glutathione production, ATF4 inhibits ferroptosis-dependent inflammatory cell death, which is known to promote compensatory proliferation and hepatocarcinogenesis. Ferroptosis inhibitors or ATF4 activators may also blunt HCC onset. IMPACT AND IMPLICATIONS: Liver cancer or hepatocellular carcinoma (HCC) is associated with multiple aetiologies. Most HCC aetiologies cause hepatocyte stress and death, as well as subsequent inflammation, and compensatory proliferation, thereby accelerating HCCdevelopment. The contribution of individual stress effectors to HCC and their underlying mechanisms of action were heretofore unknown. This study shows that the stress-responsive transcription factor ATF4 blunts liver damage and cancer development by suppressing iron-dependent cell death (ferroptosis). Although ATF4 ablation prevents hepatic steatosis, it also increases susceptibility to ferroptosis, due to decreased expression of the cystine/glutamate antiporter SLC7A11, whose expression in human HCC and NASH correlates with ATF4. These findings reinforce the notion that benign steatosis may be protective and does not increase cancer risk unless accompanied by stress-induced liver damage. These results have important implications for prevention of liver damage and cancer.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/complicações , Fator 4 Ativador da Transcrição/metabolismo , Cistina/metabolismo , Inflamação/complicações , Carcinogênese , Glutamatos , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo
5.
Hepatology ; 77(2): 619-639, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35524448

RESUMO

The endoplasmic reticulum (ER) is an intracellular organelle that fosters the correct folding of linear polypeptides and proteins, a process tightly governed by the ER-resident enzymes and chaperones. Failure to shape the proper 3-dimensional architecture of proteins culminates in the accumulation of misfolded or unfolded proteins within the ER, disturbs ER homeostasis, and leads to canonically defined ER stress. Recent studies have elucidated that cellular perturbations, such as lipotoxicity, can also lead to ER stress. In response to ER stress, the unfolded protein response (UPR) is activated to reestablish ER homeostasis ("adaptive UPR"), or, conversely, to provoke cell death when ER stress is overwhelmed and sustained ("maladaptive UPR"). It is well documented that ER stress contributes to the onset and progression of multiple hepatic pathologies including NAFLD, alcohol-associated liver disease, viral hepatitis, liver ischemia, drug toxicity, and liver cancers. Here, we review key studies dealing with the emerging role of ER stress and the UPR in the pathophysiology of liver diseases from cellular, murine, and human models. Specifically, we will summarize current available knowledge on pharmacological and non-pharmacological interventions that may be used to target maladaptive UPR for the treatment of nonmalignant liver diseases.


Assuntos
Estresse do Retículo Endoplasmático , Hepatopatias , Animais , Humanos , Camundongos , Estresse do Retículo Endoplasmático/fisiologia , Hepatopatias Alcoólicas , Chaperonas Moleculares , Hepatopatia Gordurosa não Alcoólica , Resposta a Proteínas não Dobradas , Hepatopatias/fisiopatologia
6.
Med Res Rev ; 43(1): 5-30, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35975736

RESUMO

The endoplasmic reticulum (ER) governs the proper folding of polypeptides and proteins through various chaperones and enzymes residing within the ER organelle. Perturbation in the ER folding process ensues when overwhelmed protein folding exceeds the ER handling capacity, leading to the accumulation of misfolded/unfolded proteins in the ER lumen-a state being referred to as ER stress. In turn, ER stress induces a gamut of signaling cascades, termed as the "unfolded protein response" (UPR) that reinstates the ER homeostasis through a panel of gene expression modulation. This type of UPR is usually deemed "adaptive UPR." However, persistent or unresolved ER stress hyperactivates UPR response, which ultimately, triggers cell death and inflammatory pathways, termed as "maladaptive/terminal UPR." A plethora of evidence indicates that crosstalks between ER stress (maladaptive UPR) and inflammation precipitate obesity pathogenesis. In this regard, the acquisition of the mechanisms linking ER stress to inflammation in obesity might unveil potential remedies to tackle this pathological condition. Herein, we aim to elucidate key mechanisms of ER stress-induced inflammation in the context of obesity and summarize potential therapeutic strategies in the management of obesity through maneuvering ER stress and ER stress-associated inflammation.


Assuntos
Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Humanos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Inflamação/patologia , Obesidade
7.
Proc Natl Acad Sci U S A ; 119(51): e2214957119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508673

RESUMO

Secretory proteins and lipids are biosynthesized in the endoplasmic reticulum (ER). The "protein quality control" system (PQC) monitors glycoprotein folding and supports the elimination of terminally misfolded polypeptides. A key component of the PQC system is Uridine diphosphate glucose:glycoprotein glucosyltransferase 1 (UGGT1). UGGT1 re-glucosylates unfolded glycoproteins, to enable the re-entry in the protein-folding cycle and impede the aggregation of misfolded glycoproteins. In contrast, a complementary "lipid quality control" (LQC) system that maintains lipid homeostasis remains elusive. Here, we demonstrate that cytotoxic phosphatidic acid derivatives with saturated fatty acyl chains are one of the physiological substrates of UGGT2, an isoform of UGGT1. UGGT2 produces lipid raft-resident phosphatidylglucoside regulating autophagy. Under the disruption of lipid metabolism and hypoxic conditions, UGGT2 inhibits PERK-ATF4-CHOP-mediated apoptosis in mouse embryonic fibroblasts. Moreover, the susceptibility of UGGT2 KO mice to high-fat diet-induced obesity is elevated. We propose that UGGT2 is an ER-localized LQC component that mitigates saturated lipid-associated ER stress via lipid glucosylation.


Assuntos
Fibroblastos , Glucosiltransferases , Animais , Camundongos , Fibroblastos/metabolismo , Glucosiltransferases/metabolismo , Estresse do Retículo Endoplasmático , Glicoproteínas/metabolismo , Lipídeos
8.
Mol Ther ; 30(12): 3542-3551, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36242517

RESUMO

Hemophilia A gene therapy targets hepatocytes to express B domain deleted (BDD) clotting factor VIII (FVIII) to permit viral encapsidation. Since BDD is prone to misfolding in the endoplasmic reticulum (ER) and ER protein misfolding in hepatocytes followed by high-fat diet (HFD) can cause hepatocellular carcinoma (HCC), we studied how FVIII misfolding impacts HCC development using hepatocyte DNA delivery to express three proteins from the same parental vector: (1) well-folded cytosolic dihydrofolate reductase (DHFR); (2) BDD-FVIII, which is prone to misfolding in the ER; and (3) N6-FVIII, which folds more efficiently than BDD-FVIII. One week after DNA delivery, when FVIII expression was undetectable, mice were fed HFD for 65 weeks. Remarkably, all mice that received BDD-FVIII vector developed liver tumors, whereas only 58% of mice that received N6 and no mice that received DHFR vector developed liver tumors, suggesting that the degree of protein misfolding in the ER increases predisposition to HCC in the context of an HFD and in the absence of viral transduction. Our findings raise concerns of ectopic BDD-FVIII expression in hepatocytes in the clinic, which poses risks independent of viral vector integration. Limited expression per hepatocyte and/or use of proteins that avoid misfolding may enhance safety.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Hepatócitos , DNA , Fatores de Coagulação Sanguínea
9.
J Clin Endocrinol Metab ; 107(11): 3100-3110, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36017587

RESUMO

CONTEXT: Aberrant biosynthesis and secretion of the insulin precursor proinsulin occurs in both type I and type II diabetes. Inflammatory cytokines are implicated in pancreatic islet stress and dysfunction in both forms of diabetes, but the mechanisms remain unclear. OBJECTIVE: We sought to determine the effect of the diabetes-associated cytokines on proinsulin folding, trafficking, secretion, and ß-cell function. METHODS: Human islets were treated with interleukin-1ß and interferon-γ for 48 hours, followed by analysis of interleukin-6, nitrite, proinsulin and insulin release, RNA sequencing, and unbiased profiling of the proinsulin interactome by affinity purification-mass spectrometry. RESULTS: Cytokine treatment induced secretion of interleukin-6, nitrites, and insulin, as well as aberrant release of proinsulin. RNA sequencing showed that cytokines upregulated genes involved in endoplasmic reticulum stress, and, consistent with this, affinity purification-mass spectrometry revealed cytokine induced proinsulin binding to multiple endoplasmic reticulum chaperones and oxidoreductases. Moreover, increased binding to the chaperone immunoglobulin binding protein was required to maintain proper proinsulin folding in the inflammatory environment. Cytokines also regulated novel interactions between proinsulin and type 1 and type 2 diabetes genome-wide association studies candidate proteins not previously known to interact with proinsulin (eg, Ataxin-2). Finally, cytokines induced proinsulin interactions with a cluster of microtubule motor proteins and chemical destabilization of microtubules with Nocodazole exacerbated cytokine induced proinsulin secretion. CONCLUSION: Together, the data shed new light on mechanisms by which diabetes-associated cytokines dysregulate ß-cell function. For the first time, we show that even short-term exposure to an inflammatory environment reshapes proinsulin interactions with critical chaperones and regulators of the secretory pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Proinsulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Estudo de Associação Genômica Ampla , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo
10.
Mol Ther ; 30(12): 3552-3569, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-35821634

RESUMO

Hepatic adeno-associated viral (AAV) gene transfer has the potential to cure the X-linked bleeding disorder hemophilia A. However, declining therapeutic coagulation factor VIII (FVIII) expression has plagued clinical trials. To assess the mechanistic underpinnings of this loss of FVIII expression, we developed a hemophilia A mouse model that shares key features observed in clinical trials. Following liver-directed AAV8 gene transfer in the presence of rapamycin, initial FVIII protein expression declines over time in the absence of antibody formation. Surprisingly, loss of FVIII protein production occurs despite persistence of transgene and mRNA, suggesting a translational shutdown rather than a loss of transduced hepatocytes. Some of the animals develop ER stress, which may be linked to hepatic inflammatory cytokine expression. FVIII protein expression is preserved by interleukin-15/interleukin-15 receptor blockade, which suppresses CD8+ T and natural killer cell responses. Interestingly, mice with initial FVIII levels >100% of normal had diminishing expression while still under immune suppression. Taken together, our findings of interanimal variability of the response, and the ability of the immune system to shut down transgene expression without utilizing cytolytic or antibody-mediated mechanisms, illustrate the challenges associated with FVIII gene transfer. Our protocols based upon cytokine blockade should help to maintain efficient FVIII expression.


Assuntos
Fator VIII , Interleucina-15 , Camundongos , Animais , Fator VIII/genética , Interleucina-15/genética , Sirolimo/farmacologia
11.
Gastroenterology ; 159(4): 1487-1503.e17, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32574624

RESUMO

BACKGROUND & AIMS: Endoplasmic reticulum to nucleus signaling 1 (ERN1, also called IRE1A) is a sensor of the unfolded protein response that is activated in the livers of patients with nonalcoholic steatohepatitis (NASH). Hepatocytes release ceramide-enriched inflammatory extracellular vesicles (EVs) after activation of IRE1A. We studied the effects of inhibiting IRE1A on release of inflammatory EVs in mice with diet-induced steatohepatitis. METHODS: C57BL/6J mice and mice with hepatocyte-specific disruption of Ire1a (IRE1αΔhep) were fed a diet high in fat, fructose, and cholesterol to induce development of steatohepatitis or a standard chow diet (controls). Some mice were given intraperitoneal injections of the IRE1A inhibitor 4µ8C. Mouse liver and primary hepatocytes were transduced with adenovirus or adeno-associated virus that expressed IRE1A. Livers were collected from mice and analyzed by quantitative polymerase chain reaction and chromatin immunoprecipitation assays; plasma samples were analyzed by enzyme-linked immunosorbent assay. EVs were derived from hepatocytes and injected intravenously into mice. Plasma EVs were characterized by nanoparticle-tracking analysis, electron microscopy, immunoblots, and nanoscale flow cytometry; we used a membrane-tagged reporter mouse to detect hepatocyte-derived EVs. Plasma and liver tissues from patients with NASH and without NASH (controls) were analyzed for EV concentration and by RNAscope and gene expression analyses. RESULTS: Disruption of Ire1a in hepatocytes or inhibition of IRE1A reduced the release of EVs and liver injury, inflammation, and accumulation of macrophages in mice on the diet high in fat, fructose, and cholesterol. Activation of IRE1A, in the livers of mice, stimulated release of hepatocyte-derived EVs, and also from cultured primary hepatocytes. Mice given intravenous injections of IRE1A-stimulated, hepatocyte-derived EVs accumulated monocyte-derived macrophages in the liver. IRE1A-stimulated EVs were enriched in ceramides. Chromatin immunoprecipitation showed that IRE1A activated X-box binding protein 1 (XBP1) to increase transcription of serine palmitoyltransferase genes, which encode the rate-limiting enzyme for ceramide biosynthesis. Administration of a pharmacologic inhibitor of serine palmitoyltransferase to mice reduced the release of EVs. Levels of XBP1 and serine palmitoyltransferase were increased in liver tissues, and numbers of EVs were increased in plasma, from patients with NASH compared with control samples and correlated with the histologic features of inflammation. CONCLUSIONS: In mouse hepatocytes, activated IRE1A promotes transcription of serine palmitoyltransferase genes via XBP1, resulting in ceramide biosynthesis and release of EVs. The EVs recruit monocyte-derived macrophages to the liver, resulting in inflammation and injury in mice with diet-induced steatohepatitis. Levels of XBP1, serine palmitoyltransferase, and EVs are all increased in liver tissues from patients with NASH. Strategies to block this pathway might be developed to reduce liver inflammation in patients with NASH.


Assuntos
Endorribonucleases/fisiologia , Vesículas Extracelulares/patologia , Hepatócitos/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Ceramidas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
12.
Nat Rev Mol Cell Biol ; 21(8): 421-438, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32457508

RESUMO

Cellular stress induced by the abnormal accumulation of unfolded or misfolded proteins at the endoplasmic reticulum (ER) is emerging as a possible driver of human diseases, including cancer, diabetes, obesity and neurodegeneration. ER proteostasis surveillance is mediated by the unfolded protein response (UPR), a signal transduction pathway that senses the fidelity of protein folding in the ER lumen. The UPR transmits information about protein folding status to the nucleus and cytosol to adjust the protein folding capacity of the cell or, in the event of chronic damage, induce apoptotic cell death. Recent advances in the understanding of the regulation of UPR signalling and its implications in the pathophysiology of disease might open new therapeutic avenues.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia , Animais , Apoptose/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Humanos , Neoplasias/metabolismo , Dobramento de Proteína , Proteínas/metabolismo , Transdução de Sinais
13.
Adv Exp Med Biol ; 1243: 113-131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32297215

RESUMO

Cellular stress induced by the accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates an elaborate signalling network termed the unfolded protein response (UPR). This adaptive response is mediated by the transmembrane signal transducers IRE1, PERK, and ATF6 to decide cell fate of recovery or death. In malignant cells, UPR signalling may be required to maintain ER homeostasis and survival in the tumor microenvironment characterized by oxidative stress, hypoxia, lactic acidosis and compromised protein folding. Here we provide an overview of the ER response to cellular stress and how the sustained activation of this network enables malignant cells to develop tumorigenic, metastatic and drug-resistant capacities to thrive under adverse conditions. Understanding the complexity of ER stress responses and how to target the UPR in disease will have significant potential for novel future therapeutics.


Assuntos
Neoplasias/patologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Progressão da Doença , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais , Microambiente Tumoral
14.
Blood ; 135(21): 1899-1911, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32128578

RESUMO

Hemophilia A, an X-linked bleeding disorder caused by deficiency of factor VIII (FVIII), is treated by protein replacement. Unfortunately, this regimen is costly due to the expense of producing recombinant FVIII as a consequence of its low-level secretion from mammalian host cells. FVIII expression activates the endoplasmic reticulum (ER) stress response, causes oxidative stress, and induces apoptosis. Importantly, little is known about the factors that cause protein misfolding and aggregation in metazoans. Here, we identified intrinsic and extrinsic factors that cause FVIII to form aggregates. We show that FVIII forms amyloid-like fibrils within the ER lumen upon increased FVIII synthesis or inhibition of glucose metabolism. Significantly, FVIII amyloids can be dissolved upon restoration of glucose metabolism to produce functional secreted FVIII. Two ER chaperone families and their cochaperones, immunoglobulin binding protein (BiP) and calnexin/calreticulin, promote FVIII solubility in the ER, where the former is also required for disaggregation. A short aggregation motif in the FVIII A1 domain (termed Aggron) is necessary and sufficient to seed ß-sheet polymerization, and BiP binding to this Aggron prevents amyloidogenesis. Our findings provide novel insight into mechanisms that limit FVIII secretion and ER protein aggregation in general and have implication for ongoing hemophilia A gene-therapy clinical trials.


Assuntos
Amiloide/química , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Fator VIII/metabolismo , Glucose/farmacologia , Chaperonas Moleculares/metabolismo , Amiloide/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Fator VIII/genética , Hemostáticos , Células Hep G2 , Humanos , Chaperonas Moleculares/genética , Edulcorantes/farmacologia
15.
Mol Cells ; 42(11): 783-793, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31707777

RESUMO

When endoplasmic reticulum (ER) functions are perturbed, the ER induces several signaling pathways called unfolded protein response to reestablish ER homeostasis through three ER transmembrane proteins: inositol-requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Although it is important to measure the activity of ATF6 that can indicate the status of the ER, no specific cell-based reporter assay is currently available. Here, we report a new cell-based method for monitoring ER stress based on the cleavage of ATF6α by sequential actions of proteases at the Golgi apparatus during ER stress. A new expressing vector was constructed by using fusion gene of GAL4 DNA binding domain (GAL4DBD) and activation domain derived from herpes simplex virus VP16 protein (VP16AD) followed by a human ATF6α N-terminal deletion variant. During ER stress, the GAL4DBD-VP16AD(GV)-hATF6α deletion variant was cleaved to liberate active transcription activator encompassing GV-hATF6α fragment which could translocate into the nucleus. The translocated GV-hATF6α fragment strongly induced the expression of firefly luciferase in HeLa Luciferase Reporter cell line containing a stably integrated 5X GAL4 site-luciferase gene. The established double stable reporter cell line HLR-GV-hATF6α(333) represents an innovative tool to investigate regulated intramembrane proteolysis of ATF6α. It can substitute active pATF6(N) binding motif-based reporter cell lines.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Retículo Endoplasmático/metabolismo , Luciferases/metabolismo , Proteínas de Membrana/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo , Fator 6 Ativador da Transcrição/genética , Linhagem Celular Tumoral , Ditiotreitol/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Células HeLa , Humanos , Luciferases/genética , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , eIF-2 Quinase/genética
16.
Elife ; 82019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498082

RESUMO

The endoplasmic reticulum (ER) imports ATP and uses energy from ATP hydrolysis for protein folding and trafficking. However, little is known about how this vital ATP transport occurs across the ER membrane. Here, using three commonly used cell lines (CHO, INS1 and HeLa), we report that ATP enters the ER lumen through a cytosolic Ca2+-antagonized mechanism, or CaATiER (Ca2+-Antagonized Transport into ER). Significantly, we show that mitochondria supply ATP to the ER and a SERCA-dependent Ca2+ gradient across the ER membrane is necessary for ATP transport into the ER, through SLC35B1/AXER. We propose that under physiological conditions, increases in cytosolic Ca2+ inhibit ATP import into the ER lumen to limit ER ATP consumption. Furthermore, the ATP level in the ER is readily depleted by oxidative phosphorylation (OxPhos) inhibitors and that ER protein misfolding increases ATP uptake from mitochondria into the ER. These findings suggest that ATP usage in the ER may increase mitochondrial OxPhos while decreasing glycolysis, i.e. an 'anti-Warburg' effect.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Animais , Transporte Biológico , Cátions Bivalentes/metabolismo , Linhagem Celular , Cricetulus , Humanos , Ratos
17.
Elife ; 82019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31184302

RESUMO

Biosynthesis of insulin - critical to metabolic homeostasis - begins with folding of the proinsulin precursor, including formation of three evolutionarily conserved intramolecular disulfide bonds. Remarkably, normal pancreatic islets contain a subset of proinsulin molecules bearing at least one free cysteine thiol. In human (or rodent) islets with a perturbed endoplasmic reticulum folding environment, non-native proinsulin enters intermolecular disulfide-linked complexes. In genetically obese mice with otherwise wild-type islets, disulfide-linked complexes of proinsulin are more abundant, and leptin receptor-deficient mice, the further increase of such complexes tracks with the onset of islet insulin deficiency and diabetes. Proinsulin-Cys(B19) and Cys(A20) are necessary and sufficient for the formation of proinsulin disulfide-linked complexes; indeed, proinsulin Cys(B19)-Cys(B19) covalent homodimers resist reductive dissociation, highlighting a structural basis for aberrant proinsulin complex formation. We conclude that increased proinsulin misfolding via disulfide-linked complexes is an early event associated with prediabetes that worsens with ß-cell dysfunction in type two diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Proinsulina/química , Dobramento de Proteína , Animais , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Progressão da Doença , Dissulfetos/química , Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Humanos , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Proinsulina/genética , Proinsulina/metabolismo , Receptores para Leptina/deficiência , Receptores para Leptina/genética
18.
J Clin Med ; 8(5)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064122

RESUMO

A paucity of advances in the development of novel therapeutic agents for squamous cell carcinomas of the head and neck, oral cavity (OSCC) and oropharynx, has stagnated disease free survival rates over the past two decades. Although immunotherapies targeted against checkpoint inhibitors such as PD-1 or CTLA-4 are just now entering the clinic for late stage disease with regularity the median improvement in overall survival is only about three months. There is an urgent unmet clinical need to identify new therapies that can be used alone or in combination with current approaches to increase survival by more than a few months. Activation of the apoptotic arm of the unfolded response (UPR) with small molecules and natural products has recently been demonstrated to be a productive approach in pre-clinical models of OSCC and several other cancers. The aim of current study was to perform a high throughput screen (HTS) with a diverse chemical library to identify compounds that could induce CHOP, a component of the apoptotic arm of the UPR. Disulfiram (DSF, also known as Antabuse) the well-known aversion therapy used to treat chronic alcoholism emerged as a hit that could generate reactive oxygen species, activate the UPR and apoptosis and reduce proliferation in OSCC cell cultures and xenografts. A panel of murine embryonic fibroblasts null for key UPR intermediates (e.g., Chop and Atf4) was resistant to DSF suggesting that an intact UPR is a key element of the mechanism regulating the antiproliferative effects of DSF.

19.
Exp Cell Res ; 382(1): 111386, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075256

RESUMO

Many FDA-approved anti-cancer therapies, targeted toward a wide array of molecular targets and signaling networks, have been demonstrated to activate the unfolded protein response (UPR). Despite a critical role for UPR signaling in the apoptotic execution of cancer cells by many of these compounds, the authors are currently unaware of any instance whereby a cancer drug was developed with the UPR as the intended target. With the essential role of the UPR as a driving force in the genesis and maintenance of the malignant phenotype, a great number of pre-clinical studies have surged into the medical literature describing the ability of dozens of compounds to induce UPR signaling in a myriad of cancer models. The focus of the current work is to review the literature and explore the role of the UPR as a mediator of chemotherapy-induced cell death in squamous cell carcinomas of the head and neck (HNSCC) and oral cavity (OCSCC), with an emphasis on preclinical studies.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Desenho de Fármacos , Terapia de Alvo Molecular , Neoplasias Bucais/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Drogas em Investigação/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Neoplasias Bucais/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
20.
Nat Commun ; 10(1): 1492, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940817

RESUMO

Accumulating evidence points to an important role for the gut microbiome in anti-tumor immunity. Here, we show that altered intestinal microbiota contributes to anti-tumor immunity, limiting tumor expansion. Mice lacking the ubiquitin ligase RNF5 exhibit attenuated activation of the unfolded protein response (UPR) components, which coincides with increased expression of inflammasome components, recruitment and activation of dendritic cells and reduced expression of antimicrobial peptides in intestinal epithelial cells. Reduced UPR expression is also seen in murine and human melanoma tumor specimens that responded to immune checkpoint therapy. Co-housing of Rnf5-/- and WT mice abolishes the anti-tumor immunity and tumor inhibition phenotype, whereas transfer of 11 bacterial strains, including B. rodentium, enriched in Rnf5-/- mice, establishes anti-tumor immunity and restricts melanoma growth in germ-free WT mice. Altered UPR signaling, exemplified in Rnf5-/- mice, coincides with altered gut microbiota composition and anti-tumor immunity to control melanoma growth.


Assuntos
Proliferação de Células , Microbioma Gastrointestinal , Melanoma/imunologia , Melanoma/microbiologia , Proteínas de Membrana/deficiência , Ubiquitina-Proteína Ligases/deficiência , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Melanoma/enzimologia , Melanoma/fisiopatologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA