Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Am J Epidemiol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38775277

RESUMO

BACKGROUND: Limited estimates exist on risk factors for epithelial ovarian cancer (EOC) in Asian, Hispanic, and Native Hawaiian/Pacific Islander (NHPI) women. METHODS: Participants included 1734 Asian (785 cases, 949 controls), 266 NHPI (99 cases, 167 controls), 1149 Hispanic (505 cases, 644 controls), and 24,189 White (9,981 cases, 14,208 controls) women from 11 studies in the Ovarian Cancer Association Consortium. Logistic regression models estimated odds ratios (ORs) and 95% confidence intervals (CIs) for risk associations by race and ethnicity. RESULTS: Heterogeneity in EOC risk associations by race and ethnicity (p ≤ 0.02) was observed for oral contraceptive (OC) use, parity, tubal ligation and smoking. We observed inverse associations with EOC risk for OC use and parity across all groups; associations were strongest in NHPI and Asian women. The inverse association for tubal ligation with risk was most pronounced for NHPI participants (OR=0.25, 95% CI 0.13-0.48), versus Asian and White participants, respectively (OR=0.68, 95% CI 0.51-0.90; OR=0.78, 95% CI 0.73-0.85). CONCLUSIONS: Differences in EOC risk factor associations were observed across racial and ethnic groups, which could in part be due to varying prevalence of EOC histotypes. Inclusion of greater diversity in future studies is essential to inform prevention strategies.

2.
Blood Cancer Discov ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713018

RESUMO

Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPNs) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for triple negative myelofibrosis (MF) patients who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in triple negative MF, and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs.

3.
Haematologica ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572562

RESUMO

Azacitidine/venetoclax is an active regimen in patients with newly diagnosed AML. However, primary or secondary resistance to azacitidine/venetoclax is an area of unmet need and overexpression of MCL-1 is suggested to be a potential resistance mechanism. Pevonedistat inhibits MCL-1 through activation of NOXA, and pevonedistat/azacitidine has previously shown activity in AML. To assess the tolerability and efficacy of adding pevonedistat to azacitidine/venetoclax in relapsed/refractory AML, we conducted a phase I multicenter openlabel study in 16 adults with relapsed/refractory AML. Patients were treated with azacitidine, venetoclax along with pevonedistat intravenously on days 1, 3 and 5 of each 28-day cycle at 10, 15 or 20 mg/m2 in successive cohorts in the dose escalation phase. The impact of treatment on protein neddylation as well as expression of pro-apoptotic BCL2 family members was assessed. The recommended phase II dose of pevonedistat was 20 mg/m2. Grade 3 or higher adverse events included neutropenia (31%), thrombocytopenia (13%), febrile neutropenia (19%), anemia (19%), hypertension (19%) and sepsis (19%). The overall response rate was 46.7% for the whole cohort including complete remission (CR) in 5 of 7 (71.4%) patients who were naïve to the hypomethylating agent/venetoclax. No measurable residual disease (MRD) was detected in 80.0% of the patients who achieved CR. The median time to best response was 50 (range: 23 - 77) days. Four patients were bridged to allogeneic stem cell transplantation. The combination of azacitidine, venetoclax and pevonedistat is safe and shows encouraging preliminary activity in patients with relapsed/refractory AML. (NCT04172844).

4.
Cell Death Differ ; 31(4): 405-416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538744

RESUMO

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Compostos de Anilina , Proteína de Sequência 1 de Leucemia de Células Mieloides , Pirimidinas , Sulfonamidas , Proteína bcl-X , Humanos , Animais , Compostos de Anilina/farmacologia , Sulfonamidas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Proteína bcl-X/metabolismo , Proteína bcl-X/antagonistas & inibidores , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Pirazóis/farmacologia , Proteína de Morte Celular Associada a bcl/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/patologia , Leucemia/metabolismo , Fosforilação/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sinergismo Farmacológico
6.
Invest New Drugs ; 42(1): 127-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270822

RESUMO

Navitoclax (ABT-263) is an oral BCL2 homology-3 mimetic that binds with high affinity to pro-survival BCL2 proteins, resulting in apoptosis. Sorafenib, an oral multi kinase inhibitor also promotes apoptosis and inhibits tumor angiogenesis. The efficacy of either agent alone is limited; however, preclinical studies demonstrate synergy with the combination of navitoclax and sorafenib. In this phase 1 study, we evaluated the combination of navitoclax and sorafenib in a dose escalation cohort of patients with refractory solid tumors, with an expansion cohort in hepatocellular carcinoma (HCC). Maximum tolerated dose (MTD) was determined using the continual reassessment method. Navitoclax and sorafenib were administered continuously on days 1 through 21 of 21-day cycles. Ten patients were enrolled in the dose escalation cohort and 15 HCC patients were enrolled in the expansion cohort. Two dose levels were tested, and the MTD was navitoclax 150 mg daily plus sorafenib 400 mg twice daily. Among all patients, the most common grade 3 toxicity was thrombocytopenia (5 patients, 20%): there were no grade 4 or 5 toxicities. Patients received a median of 2 cycles (range 1-36 cycles) and all patients were off study treatment at data cut off. Six patients in the expansion cohort had stable disease, and there were no partial or complete responses. Drug-drug interaction between navitoclax and sorafenib was not observed. The combination of navitoclax and sorafenib did not increase induction of apoptosis compared with navitoclax alone. Navitoclax plus sorafenib is tolerable but showed limited efficacy in the HCC expansion cohort. These findings do not support further development of this combination for the treatment of advanced HCC. This phase I trial was conducted under ClinicalTrials.gov registry number NCT01364051.


Assuntos
Compostos de Anilina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Sorafenibe , Humanos , Compostos de Anilina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/uso terapêutico , Sulfonamidas/uso terapêutico
7.
NPJ Breast Cancer ; 9(1): 101, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114522

RESUMO

Endoxifen, a secondary tamoxifen metabolite, is a potent antiestrogen exhibiting estrogen receptor alpha (ERα) binding at nanomolar concentrations. Phase I/II clinical trials identified clinical activity of Z-endoxifen (ENDX), in endocrine-refractory metastatic breast cancer as well as ERα+ solid tumors, raising the possibility that ENDX may have a second, ERα-independent, mechanism of action. An unbiased mass spectrometry approach revealed that ENDX concentrations achieved clinically with direct ENDX administration (5 µM), but not low concentrations observed during tamoxifen treatment (<0.1 µM), profoundly altered the phosphoproteome of the aromatase expressing MCF7AC1 cells with limited impact on the total proteome. Computational analysis revealed protein kinase C beta (PKCß) and protein kinase B alpha or AKT1 as potential kinases responsible for mediating ENDX effects on protein phosphorylation. ENDX more potently inhibited PKCß1 kinase activity compared to other PKC isoforms, and ENDX binding to PKCß1 was confirmed using Surface Plasma Resonance. Under conditions that activated PKC/AKT signaling, ENDX induced PKCß1 degradation, attenuated PKCß1-activated AKTSer473 phosphorylation, diminished AKT substrate phosphorylation, and induced apoptosis. ENDX's effects on AKT were phenocopied by siRNA-mediated PKCß1 knockdown or treatment with the pan-AKT inhibitor, MK-2206, while overexpression of constitutively active AKT diminished ENDX-induced apoptosis. These findings, which identify PKCß1 as an ENDX target, indicate that PKCß1/ENDX interactions suppress AKT signaling and induce apoptosis in breast cancer.

8.
Cancer Med ; 12(23): 21229-21239, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37960985

RESUMO

BACKGROUND: Despite recent approval of several new agents, relapsed acute lymphoblastic leukemia (ALL) remains challenging to treat. Sapanisertib (MLN0128/TAK-228) is an oral TORC1/2 inhibitor that exhibited preclinical activity against ALL. METHODS: We conducted a single-arm multi-center Phase II study of sapanisertib monotherapy (3 mg orally daily of the milled formulation for 21 days every 28 days) in patients with ALL through the Experimental Therapeutics Clinical Trials Network (NCI-9775). RESULTS: Sixteen patients, 15 of whom were previously treated (median 3 prior lines of therapy), were enrolled. Major grade 3-4 non-hematologic toxicities included mucositis (3 patients) and hyperglycemia (2 patients) as well as hepatic failure, seizures, confusion, pneumonitis, and anorexia (1 patient each). Grade >2 hematological toxicity included leukopenia (3), lymphopenia (2), thrombocytopenia, and neutropenia (1). The best response was stable disease in 2 patients (12.5%), while only 3 patients (19%) were able to proceed to Cycle 2. Pharmacokinetic analysis demonstrated drug exposures similar to those observed in solid tumor patients. Immunoblotting in serially collected samples indicated limited impact of treatment on phosphorylation of mTOR pathway substrates such as 4EBP1, S6, and AKT. CONCLUSION: In summary, single-agent sapanisertib had a good safety profile but limited target inhibition or efficacy in ALL as a single agent. This trial was registered at ClinicalTrials.gov as NCT02484430.


Assuntos
Benzoxazóis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
9.
medRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986741

RESUMO

Background: Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC. Patients and methods: RB1 protein expression patterns were classified by immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 mutations to model co-loss with treatment response. We also performed genomic analyses on 126 primary HGSC to explore the molecular characteristics of concurrent homologous recombination deficiency and RB1 loss. Results: RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 ×10-7), but with poorer prognosis in ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 ×10-6) compared to patients with either alteration alone, and their median OS was three times longer than non-carriers whose tumours retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and genomic evidence of homologous recombination deficiency was correlated with transcriptional markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. Conclusions: Co-occurrence of RB1 loss and BRCA mutation was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.

10.
Nucleic Acids Res ; 51(20): 11056-11079, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37823600

RESUMO

Zinc finger (ZNF) motifs are some of the most frequently occurring domains in the human genome. It was only recently that ZNF proteins emerged as key regulators of genome integrity in mammalian cells. In this study, we report a new role for the Krüppel-type ZNF-containing protein ZNF432 as a novel poly(ADP-ribose) (PAR) reader that regulates the DNA damage response. We show that ZNF432 is recruited to DNA lesions via DNA- and PAR-dependent mechanisms. Remarkably, ZNF432 stimulates PARP-1 activity in vitro and in cellulo. Knockdown of ZNF432 inhibits phospho-DNA-PKcs and increases RAD51 foci formation following irradiation. Moreover, purified ZNF432 preferentially binds single-stranded DNA and impairs EXO1-mediated DNA resection. Consequently, the loss of ZNF432 in a cellular system leads to resistance to PARP inhibitors while its overexpression results in sensitivity. Taken together, our results support the emerging concept that ZNF-containing proteins can modulate PARylation, which can be embodied by the pivotal role of ZNF432 to finely balance the outcome of PARPi response by regulating homologous recombination.


Assuntos
Poli ADP Ribosilação , Poli Adenosina Difosfato Ribose , Humanos , DNA/genética , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo
11.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541199

RESUMO

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Proteogenômica , Feminino , Humanos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
12.
Oncogene ; 42(37): 2725-2736, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550562

RESUMO

PG545 (Pixatimod) is a highly sulfated small molecule known for its ability to inhibit heparanase and disrupt signaling mediated by heparan-binding-growth factors (HB-GF). Previous studies indicated that PG545 inhibits growth factor-mediated signaling in ovarian cancer (OC) to enhance response to chemotherapy. Here we investigated the previously unidentified mechanisms by which PG545 induces DNA damage in OC cells and found that PG545 induces DNA single- and double-strand breaks, reduces RAD51 expression in an autophagy-dependent manner and inhibits homologous recombination repair (HRR). These changes accompanied the ability of PG545 to inhibit endocytosis of the heparan-sulfate proteoglycan interacting DNA repair protein, DEK, leading to DEK sequestration in the tumor microenvironment (TME) and loss of nuclear DEK needed for HRR. As a result, PG545 synergized with poly (ADP-ribose) polymerase inhibitors (PARPis) in OC cell lines in vitro and in 55% of primary cultures of patient-derived ascites samples ex vivo. Moreover, PG545/PARPi synergy was observed in OC cells exhibiting either de novo or acquired resistance to PARPi monotherapy. PG545 in combination with rucaparib also generated increased DNA damage, increased antitumor effects and increased survival of mice bearing HRR proficient OVCAR5 xenografts compared to monotherapy treatment in vivo. Synergistic antitumor activity of the PG545/rucaparib combination was likewise observed in an immunocompetent syngeneic ID8F3 OC model. Collectively, these results suggest that targeting DEK-HSPG interactions in the TME through the use of PG545 may be a novel method of inhibiting DNA repair and sensitizing cells to PARPis.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Saponinas , Animais , Feminino , Humanos , Camundongos , Inibidores da Angiogênese/farmacologia , Linhagem Celular Tumoral , Reparo do DNA , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Microambiente Tumoral , Saponinas/farmacologia , Saponinas/uso terapêutico
13.
Cell Death Dis ; 14(7): 394, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393297

RESUMO

Small molecule direct BAK activators can potentially be used for the development of anti-cancer drugs or as tools to study BAK activation. The thrombopoietin receptor agonist eltrombopag (Eltro) inhibits BAX activation and BAX-mediated apoptosis. Here we report that, in contrast to its function as a BAX inhibitor, Eltro directly binds BAK but induces its activation in vitro. Moreover, Eltro induces or sensitizes BAK-dependent cell death in mouse embryonic fibroblasts (MEFs) and Jurkat cells. Chemical shift perturbation analysis by NMR indicates that Eltro binds to the BAK α4/α6/α7 groove to initiate BAK activation. Further molecular docking by HADDOCK suggests that several BAK residues, including R156, F157, and H164, play an important role in the interaction with Eltro. The introduction of an R156E mutation in the BAK α4/α6/α7 groove not only decreases Eltro binding and Eltro-induced BAK activation in vitro but also diminishes Eltro-induced apoptosis. Thus, our data suggest that Eltro directly induces BAK activation and BAK-dependent apoptosis, providing a starting point for the future development of more potent and selective direct BAK activators.


Assuntos
Apoptose , Fibroblastos , Animais , Camundongos , Simulação de Acoplamento Molecular , Proteína X Associada a bcl-2/genética
14.
Blood Cancer J ; 13(1): 81, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193683

RESUMO

How to identify follicular lymphoma (FL) patients with low disease burden but high risk for early progression is unclear. Building on a prior study demonstrating the early transformation of FLs with high variant allele frequency (VAF) BCL2 mutations at activation-induced cytidine deaminase (AICDA) sites, we examined 11 AICDA mutational targets, including BCL2, BCL6, PAX5, PIM1, RHOH, SOCS, and MYC, in 199 newly diagnosed grade 1 and 2 FLs. BCL2 mutations with VAF ≥20% occurred in 52% of cases. Among 97 FL patients who did not initially receive rituximab-containing therapy, nonsynonymous BCL2 mutations at VAF ≥20% were associated with increased transformation risk (HR 3.01, 95% CI 1.04-8.78, p = 0.043) and a trend toward shorter event-free survival (EFS, median 20 months with mutations versus 54 months without, p = 0.052). Other sequenced genes were less frequently mutated and did not increase the prognostic value of the panel. Across the entire population, nonsynonymous BCL2 mutations at VAF ≥20% were associated with decreased EFS (HR 1.55, 95% CI 1.02-2.35, p = 0.043 after correction for FLIPI and treatment) and decreased overall survival after median 14-year follow-up (HR 1.82, 95% CI 1.05-3.17, p = 0.034). Thus, high VAF nonsynonymous BCL2 mutations remain prognostic even in the chemoimmunotherapy era.


Assuntos
Linfoma Folicular , Humanos , Linfoma Folicular/tratamento farmacológico , Linfoma Folicular/genética , Mutação , Prognóstico , Intervalo Livre de Progressão , Proteínas Proto-Oncogênicas c-bcl-2/genética
15.
Sci Rep ; 13(1): 730, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639731

RESUMO

Ovarian cancer (OC) is the second most common gynecological malignancy and the fifth leading cause of death due to cancer in women in the United States mainly due to the late-stage diagnosis of this cancer. It is, therefore, critical to identify potential indicators to aid in early detection and diagnosis of this disease. We investigated the microbiome associated with OC and its potential role in detection, progression as well as prognosis of the disease. We identified a distinct OC microbiome with general enrichment of several microbial taxa, including Dialister, Corynebacterium, Prevotella, and Peptoniphilus in the OC cohort in all body sites excluding stool and omentum which were not sampled from the benign cohort. These taxa were, however, depleted in the advanced-stage and high-grade OC patients compared to early-stage and low-grade OC patients suggestive of decrease accumulation in advanced disease and could serve as potential indicators for early detection of OC. Similarly, we also observed the accumulation of these mainly pathogenic taxa in OC patients with adverse treatment outcomes compared to those without events and could also serve as potential indicators for predicting patients' responses to treatment. These findings provide important insights into the potential use of the microbiome as indicators in (1) early detection of and screening for OC and (2) predicting patients' response to treatment. Given the limited number of patients enrolled in the study, these results would need to be further investigated and confirmed in a larger study.


Assuntos
Microbiota , Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Detecção Precoce de Câncer , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia
17.
Proc Natl Acad Sci U S A ; 119(38): e2202727119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099300

RESUMO

Mutations in homologous recombination (HR) genes, including BRCA1, BRCA2, and the RAD51 paralog RAD51C, predispose to tumorigenesis and sensitize cancers to DNA-damaging agents and poly(ADP ribose) polymerase inhibitors. However, ∼800 missense variants of unknown significance have been identified for RAD51C alone, impairing cancer risk assessment and therapeutic strategies. Here, we interrogated >50 RAD51C missense variants, finding that mutations in residues conserved with RAD51 strongly predicted HR deficiency and disrupted interactions with other RAD51 paralogs. A cluster of mutations was identified in and around the Walker A box that led to impairments in HR, interactions with three other RAD51 paralogs, binding to single-stranded DNA, and ATP hydrolysis. We generated structural models of the two RAD51 paralog complexes containing RAD51C, RAD51B-RAD51C-RAD51D-XRCC2 and RAD51C-XRCC3. Together with our functional and biochemical analyses, the structural models predict ATP binding at the interface of RAD51C interactions with other RAD51 paralogs, similar to interactions between monomers in RAD51 filaments, and explain the failure of RAD51C variants in binding multiple paralogs. Ovarian cancer patients with variants in this cluster showed exceptionally long survival, which may be relevant to the reversion potential of the variants. This comprehensive analysis provides a framework for RAD51C variant classification. Importantly, it also provides insight into the functioning of the RAD51 paralog complexes.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Neoplasias Ovarianas , Rad51 Recombinase , Proteínas Supressoras de Tumor , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Mutação , Neoplasias Ovarianas/genética , Rad51 Recombinase/genética , Proteínas Supressoras de Tumor/genética
18.
BMC Bioinformatics ; 23(1): 321, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931981

RESUMO

BACKGROUND: Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. RESULTS: In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. CONCLUSIONS: Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM .


Assuntos
Neoplasias Ovarianas , Biomarcadores , Causalidade , Criança , Simulação por Computador , Fatores de Confusão Epidemiológicos , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
19.
Front Cell Dev Biol ; 10: 752326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359437

RESUMO

Cancer stem cells (CSCs) represent a small fraction of the total cancer cell population, yet they are thought to drive disease propagation, therapy resistance and relapse. Like healthy stem cells, CSCs possess the ability to self-renew and differentiate. These stemness phenotypes of CSCs rely on multiple molecular cues, including signaling pathways (for example, WNT, Notch and Hedgehog), cell surface molecules that interact with cellular niche components, and microenvironmental interactions with immune cells. Despite the importance of understanding CSC biology, our knowledge of how neighboring immune and tumor cell populations collectively shape CSC stemness is incomplete. Here, we provide a systems biology perspective on the crucial roles of cellular population identification and dissection of cell regulatory states. By reviewing state-of-the-art single-cell technologies, we show how innovative systems-based analysis enables a deeper understanding of the stemness of the tumor niche and the influence of intratumoral cancer cell and immune cell compositions. We also summarize strategies for refining CSC systems biology, and the potential role of this approach in the development of improved anticancer treatments. Because CSCs are amenable to cellular transitions, we envision how systems pharmacology can become a major engine for discovery of novel targets and drug candidates that can modulate state transitions for tumor cell reprogramming. Our aim is to provide deeper insights into cancer stemness from a systems perspective. We believe this approach has great potential to guide the development of more effective personalized cancer therapies that can prevent CSC-mediated relapse.

20.
Cancer Chemother Pharmacol ; 89(5): 721-735, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35435472

RESUMO

PURPOSE: BRCA1 or BRCA2 mutated cancers (BRCAmut) have intrinsic sensitivity to PARP inhibitors due to deficiency in homologous recombination-mediated DNA repair. There are similarities between BRCAmut and BRCAwt ovarian and basal-like breast cancers. This phase I study determined the recommended phase II dose (RP2D) and preliminary efficacy of the PARP inhibitor, veliparib (ABT-888), in these patients. PATIENTS AND METHODS: Patients (n = 98) were dosed with veliparib 50-500 mg twice daily (BID). The BRCAmut cohort (n = 70) contained predominantly ovarian (53%) and breast (23%) cancers; the BRCAwt cohort (n = 28) consisted primarily of breast cancer (86%). The MTD, DLT, adverse events, PK, PD, and clinical response were assessed. RESULTS: DLTs were grade 3 nausea/vomiting at 400 mg BID in a BRCAmut carrier, grade 2 seizure at 400 mg BID in a patient with BRCAwt cancer, and grade 2 seizure at 500 mg BID in a BRCAmut carrier. Common toxicities included nausea (65%), fatigue (45%), and lymphopenia (38%). Grade 3/4 toxicities were rare (highest lymphopenia at 15%). Overall response rate (ORR) was 23% (95% CI 13-35%) in BRCAmut overall, and 37% (95% CI 21-55%) at 400 mg BID and above. In BRCAwt, ORR was 8% (95% CI 1-26%), and clinical benefit rate was 16% (95% CI 4-36%), reflecting prolonged stable disease in some patients. PK was linear with dose and was correlated with response and nausea. CONCLUSIONS: Continuous veliparib is safe and tolerable. The RP2D was 400 mg BID. There is evidence of clinical activity of veliparib in patients with BRCAmut and BRCAwt cancers.


Assuntos
Linfopenia , Neoplasias Ovarianas , Neoplasias de Mama Triplo Negativas , Protocolos de Quimioterapia Combinada Antineoplásica , Proteína BRCA1/genética , Proteína BRCA2/genética , Benzimidazóis , Feminino , Humanos , Linfopenia/induzido quimicamente , Linfopenia/tratamento farmacológico , Náusea/induzido quimicamente , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Platina/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Convulsões/induzido quimicamente , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA