Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0264917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35594245

RESUMO

Nonhost disease resistance is the most common type of plant defense mechanism against potential pathogens. In the present study, the metabolic enzyme formate dehydrogenase 1 (FDH1) was identified to associate with nonhost disease resistance in Nicotiana benthamiana and Arabidopsis thaliana. In Arabidopsis, AtFDH1 was highly upregulated in response to both host and nonhost bacterial pathogens. The Atfdh1 mutants were compromised in nonhost resistance, basal resistance, and gene-for-gene resistance. The expression patterns of salicylic acid (SA) and jasmonic acid (JA) marker genes after pathogen infections in Atfdh1 mutant indicated that both SA and JA are involved in the FDH1-mediated plant defense response to both host and nonhost bacterial pathogens. Previous studies reported that FDH1 localizes to mitochondria, or both mitochondria and chloroplasts. Our results showed that the AtFDH1 mainly localized to mitochondria, and the expression level of FDH1 was drastically increased upon infection with host or nonhost pathogens. Furthermore, we identified the potential co-localization of mitochondria expressing FDH1 with chloroplasts after the infection with nonhost pathogens in Arabidopsis. This finding suggests the possible role of FDH1 in mitochondria and chloroplasts during defense responses against bacterial pathogens in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Resistência à Doença , Doenças das Plantas , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Resistência à Doença/genética , Formiato Desidrogenases/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Ácido Salicílico/metabolismo , Nicotiana
2.
PLoS One ; 16(2): e0247170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606812

RESUMO

Glutathione transferases (GSTs) constitute an ancient, ubiquitous, multi-functional antioxidant enzyme superfamily that has great importance on cellular detoxification against abiotic and biotic stresses as well as plant development and growth. The present study aimed to a comprehensive genome-wide identification and functional characterization of GST family in one of the economically important legume plants-Medicago truncatula. Here, we have identified a total of ninety-two putative MtGST genes that code for 120 proteins. All these members were classified into twelve classes based on their phylogenetic relationship and the presence of structural conserved domain/motif. Among them, 7 MtGST gene pairs were identified to have segmental duplication. Expression profiling of MtGST transcripts revealed their high level of organ/tissue-specific expression in most of the developmental stages and anatomical tissues. The transcripts of MtGSTU5, MtGSTU8, MtGSTU17, MtGSTU46, and MtGSTU47 showed significant up-regulation in response to various abiotic and biotic stresses. Moreover, transcripts of MtGSTU8, MtGSTU14, MtGSTU28, MtGSTU30, MtGSTU34, MtGSTU46 and MtGSTF8 were found to be highly upregulated in response to drought treatment for 24h and 48h. Among the highly stress-responsive MtGST members, MtGSTU17 showed strong affinity towards its conventional substrates reduced glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB) with the lowest binding energy of-5.7 kcal/mol and -6.5 kcal/mol, respectively. Furthermore, the substrate-binding site residues of MtGSTU17 were found to be highly conserved. These findings will facilitate the further functional and evolutionary characterization of GST genes in Medicago.


Assuntos
Glutationa Transferase/metabolismo , Medicago truncatula/enzimologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Cromossomos de Plantas/metabolismo , Evolução Molecular , Duplicação Gênica , Glutationa/química , Glutationa/metabolismo , Glutationa Transferase/classificação , Glutationa Transferase/genética , Glicosilação , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Repetições de Microssatélites/genética , Simulação de Acoplamento Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transcriptoma
3.
Plant Cell ; 29(9): 2233-2248, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28855332

RESUMO

Plants have complex and adaptive innate immune responses against pathogen infections. Stomata are key entry points for many plant pathogens. Both pathogens and plants regulate stomatal aperture for pathogen entry and defense, respectively. Not all plant proteins involved in stomatal aperture regulation have been identified. Here, we report GENERAL CONTROL NONREPRESSIBLE4 (GCN4), an AAA+-ATPase family protein, as one of the key proteins regulating stomatal aperture during biotic and abiotic stress. Silencing of GCN4 in Nicotiana benthamiana and Arabidopsis thaliana compromises host and nonhost disease resistance due to open stomata during pathogen infection. AtGCN4 overexpression plants have reduced H+-ATPase activity, stomata that are less responsive to pathogen virulence factors such as coronatine (phytotoxin produced by the bacterium Pseudomonas syringae) or fusicoccin (a fungal toxin produced by the fungus Fusicoccum amygdali), reduced pathogen entry, and enhanced drought tolerance. This study also demonstrates that AtGCN4 interacts with RIN4 and 14-3-3 proteins and suggests that GCN4 degrades RIN4 and 14-3-3 proteins via a proteasome-mediated pathway and thereby reduces the activity of the plasma membrane H+-ATPase complex, thus reducing proton pump activity to close stomata.


Assuntos
Proteínas 14-3-3/metabolismo , Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Resistência à Doença , Secas , Nicotiana/imunologia , Estômatos de Plantas/fisiologia , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Membrana Celular/metabolismo , Sequência Conservada , DNA Complementar/genética , Inativação Gênica/efeitos dos fármacos , Modelos Biológicos , Imunidade Vegetal/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , ATPases Translocadoras de Prótons/metabolismo , Estresse Fisiológico , Nicotiana/efeitos dos fármacos , Nicotiana/fisiologia
4.
Int J Mol Sci ; 14(5): 9497-513, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23644883

RESUMO

Acclimation of plants with an abiotic stress can impart tolerance to some biotic stresses. Such a priming response has not been widely studied. In particular, little is known about enhanced defense capacity of drought stress acclimated plants to fungal and bacterial pathogens. Here we show that prior drought acclimation in Nicotiana benthamiana plants imparts tolerance to necrotrophic fungus, Sclerotinia sclerotiorum, and also to hemi-biotrophic bacterial pathogen, Pseudomonas syringae pv. tabaci. S. sclerotiorum inoculation on N. benthamiana plants acclimated with drought stress lead to less disease-induced cell death compared to non-acclimated plants. Furthermore, inoculation of P. syringae pv. tabaci on N. benthamiana plants acclimated to moderate drought stress showed reduced disease symptoms. The levels of reactive oxygen species (ROS) in drought acclimated plants were highly correlated with disease resistance. Further, in planta growth of GFPuv expressing P. syringae pv. tabaci on plants pre-treated with methyl viologen showed complete inhibition of bacterial growth. Taken together, these experimental results suggested a role for ROS generated during drought acclimation in imparting tolerance against S. sclerotiorum and P. syringae pv. tabaci. We speculate that the generation of ROS during drought acclimation primed a defense response in plants that subsequently caused the tolerance against the pathogens tested.


Assuntos
Aclimatação , Ascomicetos/fisiologia , Secas , Nicotiana/microbiologia , Nicotiana/fisiologia , Pseudomonas syringae/fisiologia , Estresse Fisiológico , Ácido Abscísico/farmacologia , Aclimatação/efeitos dos fármacos , Aclimatação/genética , Ascomicetos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Pseudomonas syringae/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Nicotiana/citologia , Nicotiana/genética
5.
Plant Cell ; 24(1): 336-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22286136

RESUMO

In contrast to gene-for-gene disease resistance, nonhost resistance governs defense responses to a broad range of potential pathogen species. To identify specific genes involved in the signal transduction cascade associated with nonhost disease resistance, we used a virus-induced gene-silencing screen in Nicotiana benthamiana, and identified the peroxisomal enzyme glycolate oxidase (GOX) as an essential component of nonhost resistance. GOX-silenced N. benthamiana and Arabidopsis thaliana GOX T-DNA insertion mutants are compromised for nonhost resistance. Moreover, Arabidopsis gox mutants have lower H(2)O(2) accumulation, reduced callose deposition, and reduced electrolyte leakage upon inoculation with hypersensitive response-causing nonhost pathogens. Arabidopsis gox mutants were not affected in NADPH oxidase activity, and silencing of a gene encoding NADPH oxidase (Respiratory burst oxidase homolog) in the gox mutants did not further increase susceptibility to nonhost pathogens, suggesting that GOX functions independently from NADPH oxidase. In the two gox mutants examined (haox2 and gox3), the expression of several defense-related genes upon nonhost pathogen inoculation was decreased compared with wild-type plants. Here we show that GOX is an alternative source for the production of H(2)O(2) during both gene-for-gene and nonhost resistance responses.


Assuntos
Oxirredutases do Álcool/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Nicotiana/enzimologia , Nicotiana/imunologia , Oxirredutases do Álcool/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Nicotiana/genética , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA